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About the Guide 

CycloneDX is a modern standard for the software supply chain. 

The content in this guide results from continuous community feedback and input from leading experts in 

the software supply chain security field. This guide would not be possible without valuable feedback from 

the CycloneDX Industry Working Group (IWG), the CycloneDX Core Working Group (CWG), the many 

CycloneDX Feature Working Groups (FWG), Ecma International Technical Committee 54, and a global 

network of contributors and supporters. 

Copyright and License 

 

Copyright © 2024 The OWASP Foundation. 

This document is released under the Creative Commons Attribution 4.0 International. For any reuse or 

distribution, you must make clear to others the license terms of this work. 

 

Second Edition, 09 April 2024 

 

Version Changes Updated On Updated By 

Second Edition Updated for CycloneDX v1.6 2024-04-09 CycloneDX Core Working Group 

First Edition Initial Release 2023-06-25 CycloneDX Core Working Group 
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Preface 

Welcome to the Authoritative Guide series by the OWASP Foundation and OWASP CycloneDX. In this 

series, we aim to provide comprehensive insights and practical guidance, ensuring that security 

professionals, developers, and organizations alike have access to the latest best practices and 

methodologies. 

At the heart of the OWASP Foundation lies a commitment to inclusivity and openness. We firmly believe 

that everyone deserves a seat at the table when it comes to shaping the future of cybersecurity 

standards. Our collaborative model fosters an environment where diverse perspectives converge to drive 

innovation and excellence. 

In line with this ethos, the OWASP Foundation has partnered with Ecma International to create an 

inclusive, community-driven ecosystem for security standards development. This collaboration empowers 

individuals to contribute their expertise and insights, ensuring that standards like CycloneDX reflect the 

collective wisdom of the global cybersecurity community. 

One standout example of this model is OWASP CycloneDX, which is on track to becoming an Ecma 

International standard through Technical Committee 54 (TC54). By leveraging the strengths of both 

organizations, CycloneDX is poised to become a cornerstone of security best practices, providing 

organizations with a universal standard for software and system transparency. 

As you embark on your journey through this Authoritative Guide, we encourage you to engage actively 

with the content and join us in shaping the future of cybersecurity standards. Together, we can build a 

safer and more resilient digital world for all. 

 

Andrew van der Stock 

Executive Director, OWASP Foundation 
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The Innovative History of OWASP CycloneDX 

OWASP CycloneDX has carved a legacy steeped in innovation, collaboration, and a commitment to 

openness. OWASP continues to advance software and system transparency standards, prioritizing 

capabilities that facilitate risk reduction. 

 
Source: https://tc54.org/history 

 

 

 

https://tc54.org/history
https://tc54.org/history
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Introduction 

CycloneDX is a modern standard for the software supply chain. At its core, CycloneDX is a general-

purpose Bill of Materials (BOM) standard capable of representing software, hardware, services, and other 

types of inventory. CycloneDX is an OWASP flagship project, has a formal standardization process and 

governance model through Ecma Technical Committee 54, and is supported by the global information 

security community. 

Design Philosophy and Guiding Principles 

The simplicity of design is at the forefront of the CycloneDX philosophy. The format is easily 

understandable by a wide range of technical and non-technical roles. CycloneDX is a full-stack BOM 

format with many advanced capabilities that are achieved without sacrificing the design philosophy. Some 

guiding principles influencing its design include: 

• Be easy to adopt and easy to contribute to 

• Identify risk to as many adopters as possible, as quickly as possible 

• Avoid blockers that prevent the identification of risk 

• Continuous improvement - innovate quickly and improve over time 

• Encourage innovation and competition through extensions 

• Produce immutable and backward-compatible releases 

• Focus on high degrees of automation 

• Provide a smooth path to specification compliance through prescriptive design 

Defining Software Bill of Materials 

The U.S. National Telecommunications and Information Administration (NTIA) defines software bill as 

materials as "a formal, machine-readable inventory of software components and dependencies, 

information about those components, and their hierarchical relationships." OWASP CycloneDX 

implements this definition and extends it in many ways, including adding services as a foundational 

component in a Software Bill of Materials. 

The Role of SBOM in Software Transparency 

Software transparency involves providing clear and accurate information about the components used in 

an application, including their name, version, supplier, and any dependencies required by the component. 

This information helps identify and manage the risks associated with the software whilst also enabling 

compliance with relevant regulations and standards. With the growing importance of software in our daily 

lives, transparency is critical to building trust in software and ensuring that it is safe, secure, and reliable. 

SBOMs are the vehicle through which software transparency can be achieved. With SBOMs, parties 

throughout the software supply chain can leverage the information within to enable various use cases that 

would not otherwise be easily achievable. SBOMs play a vital role in promoting software transparency, 

allowing users to make informed decisions about the software they use. 

 

 

 

https://tc54.org/
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High-Level SBOM Use Cases 

A complete and accurate inventory of all first-party and third-party components is essential for risk 

identification. SBOMs should ideally contain all direct and transitive components and the dependency 

relationships between them. 

CycloneDX far exceeds the Minimum Elements for Software Bill of Materials as defined by the National 

Telecommunications and Information Administration (NTIA) in response to U.S. Executive Order 14028. 

Adopting CycloneDX allows organizations to quickly meet these minimum requirements and mature into 

using more sophisticated use cases over time. CycloneDX is capable of achieving all SBOM requirements 

defined in the OWASP Software Component Verification Standard (SCVS). 

A few high-level use cases for SBOM include: 

• Product security, architectural, and license risk 

• Procurement and M&A 

• Software component transparency 

• Supply chain transparency 

• Vendor risk management 

xBOM Capabilities 

CycloneDX provides advanced supply chain capabilities for cyber risk reduction. Among these 

capabilities are: 

• Software Bill of Materials (SBOM) 

• Software-as-a-Service Bill of Materials (SaaSBOM) 

• Hardware Bill of Materials (HBOM) 

• Machine Learning Bill of Materials (ML-BOM) 

• Cryptography Bill of Materials (CBOM) 

• Operations Bill of Materials (OBOM) 

• Manufacturing Bill of Materials (MBOM) 

• Bill of Vulnerabilities (BOV) 

• Vulnerability Disclosure Report (VDR) 

• Vulnerability Exploitability eXchange (VEX) 

• CycloneDX Attestations (CDXA) 

• Common Release Notes Format 

  

 

 

 

https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.gov/
https://www.ntia.gov/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://owasp.org/scvs
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Software Bill of Materials (SBOM) 

SBOMs describe the inventory of software components and services and the dependency relationships 

between them. A complete and accurate inventory of all first-party and third-party components is 

essential for risk identification. SBOMs should ideally contain all direct and transitive components and the 

dependency relationships between them. 

Software-as-a-Service BOM (SaaSBOM) 

SaaSBOMs provide an inventory of services, endpoints, and data flows and classifications that power 

cloud-native applications. CycloneDX is capable of describing any type of service, including 

microservices, Service Orientated Architecture (SOA), Function as a Service (FaaS), and System of 

Systems. 

SaaSBOMs complement Infrastructure-as-Code (IaC) by providing a logical representation of a complex 

system, complete with an inventory of all services, their reliance on other services, endpoint URLs, data 

classifications, and the directional flow of data between services. Optionally, SaaSBOMs may also include 

the software components that make up each service. 

Hardware Bill of Materials (HBOM) 

CycloneDX supports many types of components, including hardware devices, making it ideal for use with 

consumer electronics, IoT, ICS, and other types of embedded devices. CycloneDX fills an important role 

in between traditional eBOM and mBOM use cases for hardware devices. 

Machine Learning Bill of Materials (ML-BOM) 

ML-BOMs provide transparency for machine learning models and datasets, which provide visibility into 

possible security, privacy, safety, and ethical considerations. CycloneDX standardizes model cards in a 

way where the inventory of models and datasets can be used independently or combined with the 

inventory of software and hardware components or services defined in HBOMs, SBOMs, and 

SaaSBOMs. 

Cryptography Bill of Materials (CBOM) 

A Cryptography Bill of Materials (CBOM) describes cryptographic assets and their dependencies. 

Discovering, managing, and reporting on cryptographic assets is necessary as the first step on the 

migration journey to quantum-safe systems and applications. Cryptography is typically buried deep within 

components used to compose and build systems and applications. As part of an agile cryptographic 

approach, organizations should seek to understand what cryptographic assets they are using and 

facilitate the assessment of the risk posture to provide a starting point for mitigation. 

Operations Bill of Materials (OBOM) 

OBOMs provide a full-stack inventory of runtime environments, configurations, and additional 

dependencies. CycloneDX is a full-stack bill of materials standard supporting entire runtime environments 

consisting of hardware, firmware, containers, operating systems, applications, and libraries. Coupled with 

the ability to specify configuration makes CycloneDX ideal for Operations Bill of Materials. 

Manufacturing Bill of Materials (MBOM) 

CycloneDX can describe declared and observed formulations for reproducibility throughout the product 

lifecycle of components and services. This advanced capability provides transparency into how 

components were made, how a model was trained, or how a service was created or deployed. In 

addition, every component and service in a CycloneDX BOM can optionally specify formulation and do so 

in existing BOMs or in dedicated MBOMs. By externalizing formulation into dedicated MBOMs, SBOMs 

can link to MBOMs for their components and services, and access control can be managed 

independently. This allows organizations to maintain tighter control over what parties gain access to 
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inventory information in a BOM and what parties have access to MBOM information which may have 

higher sensitivity and data classification. 

Bill of Vulnerabilities (BOV) 

CycloneDX BOMs may consist solely of vulnerabilities and thus can be used to share vulnerability data 

between systems and sources of vulnerability intelligence. Complex vulnerability data can be 

represented, including the vulnerability source, references, multiple severities, risk ratings, details and 

recommendations, and the affected software and hardware, along with their versions. 

Vulnerability Disclosure Report (VDR) 

VDRs communicate known and unknown vulnerabilities affecting components and services. Known 

vulnerabilities inherited from the use of third-party and open-source software can be communicated with 

CycloneDX. Previously unknown vulnerabilities affecting both components and services may also be 

disclosed using CycloneDX, making it ideal for Vulnerability Disclosure Report (VDR) use cases. 

CycloneDX exceeds the data field requirements defined in ISO/IEC 29147:2018 for vulnerability 

disclosure information. 

Vulnerability Exploitability eXchange (VEX) 

VEX conveys the exploitability of vulnerable components in the context of the product in which they're 

used. VEX is a subset of VDR. Oftentimes, products are not affected by a vulnerability simply by including 

an otherwise vulnerable component. VEX allows software vendors and other parties to communicate the 

exploitability status of vulnerabilities, providing clarity on the vulnerabilities that pose a risk and the ones 

that do not. 

CycloneDX Attestations (CDXA) 

CycloneDX Attestations enable organizations to communicate security standards, claims, and evidence 

about security requirements, and attestations to the veracity and completeness of those claims. 

CycloneDX Attestations is a way to manage "compliance as code." 

Common Release Notes Format 

CycloneDX standardizes release notes into a common, machine-readable format. This capability unlocks 

new workflow potential for software publishers and consumers alike. This functionality works with or 

without the Bill of Materials capabilities of the specification. 

  

 

 

 

https://www.iso.org/standard/72311.html
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CycloneDX Object Model 

The CycloneDX object model is defined in JSON Schema, XML Schema, and Protocol Buffers and 

consists of metadata, components, services, dependencies, compositions, vulnerabilities, formulation, 

and annotations. CycloneDX is prescriptive, can easily describe complex relationships, and is extensible 

to support specialized and future use cases. 

Within the root bom element, CycloneDX defines the following object types: 

 

The object types are arranged in order and contain (but are not limited to) the following types of data: 
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BOM Identity 

The bom element has properties for serialNumber and version. Together these two properties form the 

identity of a BOM. A BOM's identity can be expressed using a BOM-Link, a formally registered URN 

capable of referencing a BOM or any component, service, or vulnerability in a BOM. Refer to the chapter 

on Relationships for more information. 

Serial Number 

Every BOM generated should have a unique serial number, even if the contents of the BOM have not 

changed over time. If specified, the serial number must conform to RFC-4122. The use of serial numbers 

is recommended. 

Version 

Whenever an existing BOM is modified, either manually or through automated processes, the version of 

the BOM should be incremented by 1. When a system is presented with multiple BOMs with identical 

serial numbers, the system should use the most recent version of the BOM. The default version is '1'. 

The Anatomy of a CycloneDX BOM 

The following are descriptions of the root-level elements of a CycloneDX BOM. 

Metadata 

BOM metadata includes the supplier, manufacturer, and target component for which the BOM describes. 

It also includes the tools used to create the BOM, and license information for the BOM document itself. 

 

Components 

Components describe the complete inventory of first-party and third-party components. The specification 

can represent software, hardware devices, machine learning models, source code, and configurations, 

along with the manufacturer information, license and copyright details, and complete pedigree and 

provenance for every component. 

 

Services 

Services represent external APIs that the software may call. They describe endpoint URIs, authentication 

requirements, and trust boundary traversals. The data flow between software and services can also be 

described, including the data classifications and the flow direction of each type. 

 

Dependencies 

CycloneDX provides the ability to describe components and their dependency on other components. The 

dependency graph is capable of representing both direct and transitive relationships. Components that 
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depend on services can be represented in the dependency graph, and services that depend on other 

services can be represented as well. 

 

Compositions 

Compositions describe constituent parts (including components, services, and dependency relationships) 

and their completeness. The aggregate of each composition can be described as complete, incomplete, 

incomplete first-party only, incomplete third-party only, or unknown. 

 

Vulnerabilities 

Known vulnerabilities inherited from the use of third-party and open-source software and the exploitability 

of the vulnerabilities can be communicated with CycloneDX. Previously unknown vulnerabilities affecting 

both components and services may also be disclosed using CycloneDX, making it ideal for both 

vulnerability disclosure and VEX use cases. 

 

Formulation 

Formulation describes how something was manufactured or deployed. CycloneDX achieves this through 

the support of multiple formulas, workflows, tasks, and steps, which represent the declared formulation 

for reproduction along with the observed formula describing the actions which transpired in the 

manufacturing process. 

 

Annotations 

Annotations contain comments, notes, explanations, or similar textual content which provide additional 

context to the object(s) being annotated. They are often automatically added to a BOM via a tool or as a 

result of manual review by individuals or organizations. Annotations can be independently signed and 

verified using digital signatures. 

 

Definitions 

Standards, requirements, levels, and all supporting documentation are defined here. CycloneDX provides 

a general-purpose, machine-readable way to define virtually any type of standard. Security standards 

such as OWASP ASVS, MASVS, SCVS, and SAMM are available in CycloneDX format. Standards from 

other bodies are available as well. Additionally, organizations can create internal standards and represent 

them in CycloneDX. 
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Declarations 

Declarations describe the conformance to standards. Each declaration may include attestations, claims, 

counter-claims, evidence, counter-evidence, along with conformance and confidence. Signatories can 

also be declared and supports both digital and analog signatures. Declarations provide the basis for 

"compliance-as-code". 

 

Extensions 

Multiple extension points exist throughout the CycloneDX object model, allowing fast prototyping of new 

capabilities and support for specialized and future use cases. The CycloneDX project maintains 

extensions that are beneficial to the larger community. The project encourages community participation 

and the development of extensions that target specialized or industry-specific use cases. 

 

Serialization Formats 

CycloneDX can be represented in JSON, XML, and Protocol Buffers (protobuf) and has corresponding 

schemas for each. 

Format Resource URL 

JSON Documentation https://cyclonedx.org/docs/latest/json/ 

JSON Schema https://cyclonedx.org/schema/bom-1.6.schema.json 

XML Documentation https://cyclonedx.org/docs/latest/xml/ 

XML Schema https://cyclonedx.org/schema/bom-1.6.xsd 

Protobuf Schema https://cyclonedx.org/schema/bom-1.6.proto 

CycloneDX relies exclusively on JSON Schema, XML Schema, and protobuf for validation. The entirety of 

the specification can be validated using officially supported CycloneDX tools or via hundreds of available 

validators that support JSON Schema, XML Schema, or protobuf. 

  

 

 

 

https://cyclonedx.org/docs/latest/json/
https://cyclonedx.org/schema/bom-1.6.schema.json
https://cyclonedx.org/docs/latest/xml/
https://cyclonedx.org/schema/bom-1.6.xsd
https://cyclonedx.org/schema/bom-1.6.proto
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Lifecycle Phases 

The Software Development Life Cycle (SDLC) is a process that outlines the phases involved in software 

development from conception to deployment and maintenance. It typically includes planning, analysis, 

design, implementation, testing, deployment, and maintenance; each phase has its own activities and 

deliverables. The purpose of the SDLC is to provide a structured and systematic approach to software 

development that ensures the final product meets the customer's requirements, is of high quality, is 

delivered on time and within budget, and can be maintained and supported throughout its' lifecycle. 

Lifecycle phases communicate the stage in which data in the BOM was captured. This support extends 

beyond software to capture hardware, IoT, and cloud-native use cases. Different types of data may be 

available at various phases of a lifecycle, and thus a BOM may include data specific to or only obtainable 

in a given lifecycle. Incorporating lifecycle phases in a CycloneDX BOM provides additional context of 

when and how the BOM was created. It becomes an additional datapoint that may be useful in the overall 

analysis of the BOM. 

CycloneDX defines the following phases: 

Phase Description 

Design BOM produced early in the development lifecycle containing an inventory of 

components and services that are proposed or planned to be used. The inventory 

may need to be procured, retrieved, or resourced prior to use. 

Pre-build BOM consisting of information obtained prior to a build process and may contain 

source files, development artifacts, and manifests. The inventory may need to be 

resolved and retrieved prior to use. 

Build BOM consisting of information obtained during a build process where component 

inventory is available for use. The precise versions of resolved components are 

usually available at this time as well as the provenance of where the components 

were retrieved from. 

Post-build BOM consisting of information obtained after a build process has completed and the 

resulting components(s) are available for further analysis. Built components may exist 

as the result of a CI/CD process, may have been installed or deployed to a system or 

device, and may need to be retrieved or extracted from the system or device. 

Operations BOM produced that represents inventory that is running and operational. This may 

include staging or production environments and will generally encompass multiple 

SBOMs describing the applications and operating system, along with HBOMs 

describing the hardware that makes up the system. Operations Bill of Materials 

(OBOM) can provide a full-stack inventory of runtime environments, configurations, 

and additional dependencies. 

Discovery BOM consisting of information observed through network discovery providing point-

in-time enumeration of embedded, on-premise, and cloud-native services such as 

server applications, connected devices, microservices, and serverless functions. 

Decommission BOM containing inventory that will be or has been retired from operations. 

In addition, CycloneDX provides a mechanism to supply user-defined lifecycle phases as well. 
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Software Asset Management (SAM) is a set of processes, policies, and procedures that help 

organizations manage and optimize their software assets throughout their lifecycle. SAM involves the 

identification, acquisition, deployment, maintenance, utilization, and disposal of software assets to ensure 

compliance with licensing agreements, mitigate risks associated with software usage, and optimize costs. 

Likewise, IT Asset Management (ITAM) has a similar function, encompassing hardware, software, and 

other IT assets. Unlike the SDLC, which has widely accepted phases, SAM and ITAM lifecycles may vary. 

For example, the lifecycles defined in ISO/IEC 19770-1:2017, which specifies requirements for IT asset 

management systems, are different from the lifecycles defined in NIST SP 1800-5. The out-of-the-box 

lifecycles provided by enterprise ITAM solutions also vary by vendor and can further be customized by 

organizations adopting these products. Therefore, CycloneDX includes predefined lifecycles that apply to 

both SDLC and SAM/ITAM, while also providing the flexibility in defining custom lifecycles. This allows 

CycloneDX to be fully integrated with existing enterprise SAM/ITAM practices. 

 

 

 

The following example illustrates a BOM that was produced in the build and post-build lifecycle phases. In 

addition, a custom phase (platform-integration-testing) was involved as well. 

 

"metadata": { 
  "lifecycles": [ 
    { 
      "phase": "build" 
    }, 
    { 
      "phase": "post-build" 
    }, 
    { 
      "name": "platform-integration-testing", 
      "description": "Integration testing specific to the runtime platform" 
    } 
  ] 
} 

 

Support for SAM and ITAM use cases is critical for enterprise adoption. An interesting distinction between 

SDLC and SAM use cases center around license compliance. Solutions supporting the SDLC typically 

involve open-source license compliance or intellectual property use cases. Whereas SAM is largely 

concerned with commercial license and procurement use cases. OWASP CycloneDX has extensive 

support for both. Refer to the "Use Cases" chapter for more information. 

  

 

 

 

https://www.iso.org/standard/68531.html
https://csrc.nist.gov/publications/detail/sp/1800-5/final
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Use Cases 

CycloneDX provides a comprehensive inventory of all software components, libraries, frameworks, and 

dependencies in a particular software application or system. It provides a detailed breakdown of the 

software supply chain, enabling transparency and accountability in software development. The benefits of 

BOMs are far-reaching and apply to various software, systems, and devices across different domains. 

Let's explore the types of software, systems, and devices that can significantly benefit from the 

transparency provided by Bills of Materials. 

1. Operating Systems: Operating systems are the foundation for all software and devices, making 

them a critical component to benefit from software transparency. By having an SBOM for an 

operating system, developers, IT administrators, and end-users can understand the underlying 

software components, identify vulnerabilities, and apply patches when necessary. This allows 

them to make informed decisions regarding security, updates, and mitigating potential risks. 

2. Software Applications: From productivity tools to enterprise applications, software applications of 

all types can benefit from an SBOM. It helps developers and users understand the software's 

building blocks, including open-source libraries, commercial components, and all other third-

party dependencies. With an SBOM, developers can track vulnerabilities, identify license 

obligations, and facilitate timely updates to ensure the security and stability of their applications. 

3. Internet of Things (IoT) Devices: IoT devices encompass a wide range of connected physical 

objects, such as smart home devices, industrial sensors, healthcare wearables, and more. 

Unfortunately, these devices often rely on software components that may introduce security 

risks. By implementing an SBOM, manufacturers and users can gain visibility into the software 

supply chain of IoT devices, identify vulnerabilities, and implement necessary security measures. 

This transparency can enhance the security and privacy of IoT ecosystems. 

4. Medical Devices: In the healthcare sector, medical devices play a crucial role in patient care and 

safety. Transparency in the software components used in medical devices is paramount to 

ensure their reliability and security. An SBOM can help manufacturers, regulatory authorities, and 

healthcare providers understand the software components, identify potential vulnerabilities or 

risks, and establish appropriate maintenance and update protocols. This can enhance patient 

safety and regulatory compliance. 

5. Automotive Systems: Modern vehicles heavily rely on software-driven systems for various 

functionalities, including infotainment, advanced driver assistance, and autonomous driving 

features. Transparency in the software components used in automotive systems is vital to ensure 

safety, security, and effective maintenance. An SBOM provides the transparency necessary to 

identify vulnerabilities, increase license compliance, and manage potential risks effectively. 

6. Critical Infrastructure: Software systems that underpin critical infrastructure, such as power grids, 

transportation networks, and financial systems, demand utmost transparency and security. An 

SBOM can offer visibility into the software components used in these systems, helping 

stakeholders assess vulnerabilities, apply security patches, and mitigate potential risks. This 

transparency contributes to the resilience, reliability, and stability of critical infrastructure. 
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In the context of national security and military operations, the transparency provided by Software Bill of 

Materials is of utmost importance. Let's explore the specific types of software, systems, and devices in 

the national security and military domain that greatly benefit from software transparency: 

1. Command and Control Systems: Command and control systems are crucial in military 

operations, facilitating real-time decision-making and coordination of forces. Transparency in the 

software components used in these systems allows military authorities to assess potential 

vulnerabilities and ensure the integrity and security of the systems. In addition, it enables the 

identification of potential backdoors, unauthorized access points, or malicious components, 

helping safeguard critical military operations and information. 

2. Cybersecurity and Information Assurance Tools: In the realm of national security, robust 

cybersecurity and information assurance tools are vital to protect against cyber threats and 

ensure secure communication and data management. Software transparency in these tools 

enables military authorities to evaluate the software supply chain, identify vulnerabilities, and 

ensure the use of trusted and up-to-date components. This enhances the resilience and 

effectiveness of cybersecurity measures and helps counter potential attacks or data breaches. 

3. Cryptographic Systems and Algorithms: Cryptographic systems and algorithms are critical in 

securing sensitive information, communications, and strategic operations. Transparency in the 

software components underpinning cryptographic systems allows military authorities to analyze 

the security properties of these components. In addition, it helps assess potential vulnerabilities, 

validate the use of approved cryptographic standards, and ensure the integrity of encryption 

algorithms employed in national security and military applications. 

4. Intelligence Analysis and Data Processing Software: Intelligence analysis and data processing 

software are vital in gathering, analyzing, and interpreting vast amounts of information for national 

security purposes. Software transparency in these software systems provides military intelligence 

agencies with insights into the underlying components and dependencies. It helps identify 

potential vulnerabilities that could compromise the accuracy, confidentiality, or integrity of 

intelligence data. This transparency assists in maintaining the security and reliability of 

intelligence operations. 

5. Unmanned Aerial Vehicles (UAVs) and Autonomous Systems: Unmanned Aerial Vehicles (UAVs) 

and autonomous systems are increasingly employed in national security and military operations. 

Transparency in the software components used in these systems enables military authorities to 

evaluate potential vulnerabilities and ensure the secure and reliable operation of UAVs. In 

addition, it helps identify potential risks associated with software-dependent functions, such as 

autonomous navigation, target acquisition, and mission execution, contributing to the overall 

effectiveness and safety of military operations. 

6. Communication and Encryption Devices: Secure and reliable communication is critical for 

national security and military operations. Software transparency in communication and 

encryption devices, such as radios, cryptographic hardware, and secure communication 

protocols, ensures the evaluation of software components involved. It helps identify 

vulnerabilities, ensure compliance with encryption standards, and protect against potential 

interception, tampering, or unauthorized access, strengthening the confidentiality and integrity of 

sensitive communications. 

The transparency provided by a Software Bill of Materials is vital to national security, benefiting a range of 

software, systems, and devices. The software transparency capabilities of CycloneDX enables military 

authorities to assess vulnerabilities, identify risks, and enhance the security and effectiveness of these 

critical assets. This transparency contributes to the protection of national security interests and the 

successful execution of military operations. 

Let's explore some specific use cases that CycloneDX BOMs unlock. 
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Inventory 

A complete and accurate inventory of all first-party and third-party components is essential for risk 

identification. BOMs should ideally contain all direct and transitive components and the dependency 

relationships between them. 

CycloneDX is capable of describing the following types of components: 

Type Class Description 

Application Component A software application 

Container Component A packaging and/or runtime format, not specific to any particular 

technology, which isolates software inside the container from 

software outside of a container through virtualization technology. 

Cryptographic 

Asset 

Component A cryptographic asset including algorithms, protocols, certificates, 

keys, tokens, and secrets. 

Data Component A collection of discrete values that convey information. 

Device Component A hardware device such as a processor, or chip-set. A hardware 

device containing firmware SHOULD include a component for the 

physical hardware itself, and another component of type 'firmware' or 

'operating-system' (whichever is relevant), describing information 

about the software running on the device. 

Device Driver Component A special type of software that operates or controls a particular type 

of device. 

File Component A computer file. 

Firmware Component A special type of software that provides low-level control over a 

device's hardware. 

Framework Component A software framework 

Library Component A software library. Many third-party and open source reusable 

components are libraries. If the library also has key features of a 

framework, then it should be classified as a framework. If not, or is 

unknown, then specifying library is RECOMMENDED. 

Machine 

Learning Model 

Component A model based on training data that can make predictions or 

decisions without being explicitly programmed to do so. 

Operating 

System 

Component A software operating system without regard to deployment model (i.e. 

installed on physical hardware, virtual machine, image, etc) 

Platform Component A runtime environment which interprets or executes software. This 

may include runtimes such as those that execute bytecode or low-

code/no-code application platforms. 
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Type Class Description 

Service Service A service including microservices, function-as-a-service, and other 

types of network or intra-process services. 

The component type is a required property for every component. It is an abstract concept to 

aid development and security teams with separation of concerns. The types represent the 

highest level of abstraction in a modular system or design. They also aid Software Asset 

Management (SAM) and IT Asset Management (ITAM) systems in classifying the inventory 

of software and constituent parts. 

CycloneDX supports multiple methods to assert identity including: 

• Coordinates: The combination of the group, name, and version fields form the coordinates of a 

component. 

• Package URL: Package URL (PURL) standardizes how software package metadata is 

represented so that packages can universally be identified and located. 

• CPE: The Common Platform Enumeration (CPE) specification was designed for operating 

systems, applications, and hardware devices. CPE is maintained by the NVD. 

• SWID: Software ID (SWID) as defined in ISO/IEC 19770-2:2015 is used primarily to identify 

installed software. 

• OmniBOR: The OmniBOR Artifact ID is capable of identifying every source code file incorporated 

into each built artifact. 

• SWHID: A Software Heritage ID is a unique identifier assigned to software artifacts to facilitate 

their identification, tracking, and preservation. 

The following example illustrates component identity in CycloneDX. 

{ 
  "type": "library", 
  "group": "com.example", 
  "name": "awesome-library", 
  "version": "1.0.0", 
  "cpe": "cpe:2.3:a:acme:awesome:1.0.0:*:*:*:*:*:*:*", 
  "purl": "pkg:maven/com.example/awesome-library@1.0.0", 
  "omniborId": [ "gitoid:blob:sha1:261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64" ], 
  "swhid": [ "swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2" ], 
  "swid": { 
    "tagId": "swidgen-242eb18a-503e-ca37-393b-cf156ef09691_1.0.0", 
    "name": "Acme Awesome Library", 
    "version": "1.0.0", 
    "text": { 
      "contentType": "text/xml", 
      "encoding": "base64", 
      "content": "U1dJRCBkb2N1bWVudCBkb2VzIGhlcmU=" 
    } 
  } 
} 

 

 

 

https://github.com/package-url/purl-spec
https://nvd.nist.gov/products/cpe
https://www.iso.org/standard/65666.html
https://omnibor.io/
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html


   

      21 

 

CycloneDX also supports several identifiers specific to hardware devices. Refer to 

https://cyclonedx.org/capabilities/hbom/ for more information. 

Assertion of identity can also be substantiated in the form of evidence, which includes the methods and 

techniques used during analysis, the confidence, and the tool(s) that performed the analysis. Refer to the 

"Evidence" chapter for more information. 

Vulnerability Management 

CycloneDX is ideal for vulnerability management and impact analysis through the support of 

comprehensive inventory and assertions of component identity. With this information, security teams can 

identify which components are affected by known vulnerabilities, estimate effort, and quickly prioritize 

remediation. 

By leveraging CycloneDX in this way, organizations can enhance their software supply chain security and 

reduce the risks associated with software vulnerabilities. 

Identifying known vulnerabilities in components can be achieved through the use of three 

fields: cpe, purl, and swid. Not all fields apply to all types of components. Components with 

a cpe, purl, or swid defined can be analyzed for known vulnerabilities. 

There are many tools and platforms that support vulnerability management use cases using CycloneDX, 

including OWASP Dependency-Track, often cited as a reference implementation for consuming and 

analyzing SBOMs. Using a platform such as Dependency-Track, organizations can quickly identify what is 

affected and where in their environment they are affected. 

Not all sources of vulnerability intelligence support all three fields. The use of multiple 

sources may be required to obtain accurate and actionable results. 

Enterprise Configuration Management Database (CMDB) 

A Configuration Management Database (CMDB) is a repository that stores information about an 

organization's assets, including hardware, software, and other components. Tracking assets in a CMDB 

involves collecting and maintaining accurate information about each asset's configuration, location, 

status, and relationships with other assets. This information helps organizations manage their assets more 

effectively, including monitoring their performance, identifying potential risks, and supporting incident 

management. 

Software Asset Management (SAM) and IT Asset Management (ITAM) are typical applications that build 

upon CMDBs. There are tremendous benefits in capturing BOMs for assets tracked in a CMDB. 

Organizations gain a more comprehensive view of their assets, which can help them make more informed 

decisions about managing their IT and OT infrastructure. They also benefit from having the broadest array 

of possible use cases, including DevOps, vendor risk management, procurement, vulnerability response, 

and supply chain management. 

CycloneDX complements and meets the requirements of ISO/IEC 19770-1:2017 which defines IT asset 

management systems, including license management, security management, and asset lifecycles, 

making it uniquely applicable for enterprise adoption. 

Integrity Verification 

Integrity verification is the process of ensuring that the software components have not been modified or 

tampered with since they were released. This helps to identify unauthorized modifications to software 

 

 

 

https://cyclonedx.org/capabilities/hbom/
https://dependencytrack.org/
https://www.iso.org/standard/68531.html
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components that may introduce security vulnerabilities or cause the software to malfunction. Integrity 

verification uses a cryptographic hash function that is used to generate a unique digital fingerprint, or 

hash value, for each software component. The hash value can then be compared with the expected hash 

value for that component to ensure that it has not been altered. 

CycloneDX can be used for integrity verification using cryptographic hashing algorithms. The specification 

allows for the inclusion of cryptographic hashes, such as SHA-256, SHA-384, or SHA-512, for each 

software component listed in the BOM. By calculating the hash of each file, package, or library and 

comparing it with the hash value listed in the BOM, organizations can verify the integrity of the software 

and detect unauthorized modifications. 

The following example illustrates how to represent hashes on a component. 

"components": [ 
    { 
      "type": "library", 
      "name": "acme-example", 
      "version": "1.0.0", 
      "hashes": [{ 
        "alg": "SHA-256", 
        "content": "d88bc4e70bfb34d18b5542136639acbb26a8ae2429aa1e47489332fb389cc964" 
      },{ 
        "alg": "BLAKE3", 
        "content": "26cdc7fb3fd65fc3b621a4ef70bc7d2489d5c19e70c76cf7ec20e538df0047cf" 
      }] 
    } 
  ] 
} 

In addition, external references (covered later in the "Relationships" chapter) also support hashes. The 

following example illustrates how CycloneDX can refer to an external BOM and include the hashes for 

that BOM. In doing so, the integrity of the external BOM can be evaluated prior to use. 

"components": [ 
  { 
    "type": "library", 
    "group": "com.example", 
    "name": "persistence", 
    "version": "5.2.0", 
    "externalReferences": [ 
      { 
        "type": "bom", 
        "url": "https://example.com/sbom.json", 
        "hashes": [ 
          { 
            "alg": "SHA-256", 
            "content": "9048a24d72d3d4a1a0384f8f925566b44f133dd2a0194111a2daeb1cf9f7015b" 
          } 
        ] 
      } 
    ] 
  } 
] 

CycloneDX supports SHA-1, SHA-2, and SHA-3 hashing algorithms along with BLAKE2b and BLAKE3. 

By leveraging CycloneDX for integrity verification, organizations can enhance the security and reliability of 

their software applications and systems. 
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Authenticity 

Authenticity refers to the assurance that a component, or the BOM itself, came from the expected source 

and has not been tampered with. Authenticity can be verified through the use of digital signatures and 

code-signing certificates, which are issued by trusted certificate authorities. These signatures allow users 

to verify the supplier's identity and ensure that the artifact has not been modified since it was signed. 

When a BOM is signed, the authenticity and integrity of the BOM can be verified. This verification can 

ensure that the data in the BOM has not been altered. Using signed BOMs increases trust and 

confidence in a software product, particularly in cases where the product is used in sensitive or critical 

applications. 

CycloneDX supports enveloped signing, including XML Signature (xmlsig) and JSON Signature Format 

(JSF). In addition, detached signatures are also supported. 

The following example illustrates the use of enveloped signing using JSF. 

"signature": { 
  "algorithm": "RS512", 
  "publicKey": { 
    "kty": "RSA", 
    "n": "qOSWbDOGS31lv3aUZVOgqZyLVrKXXRfmxFQxEylc...", 
    "e": "AQAB" 
  }, 
  "value": "HGIX_ccdIcqmaOpkxDzKH_j0ozSHUAUyBxGpXS..." 
} 

License Compliance 

CycloneDX is ideal for both open-source and commercial license compliance. By leveraging the licensing 

capabilities of CycloneDX, organizations can identify any licenses that may be incompatible or require 

specific compliance obligations, such as attribution or sharing of source code. CycloneDX supports 

declared, observed, and concluded licenses. 

CycloneDX can also help organizations manage their commercial software licenses by providing a clear 

understanding of what licenses are in use and which ones require renewal or additional purchases, which 

may impact the operational aspects of applications or systems. By leveraging CycloneDX for commercial 

license compliance, organizations can reduce the risks associated with license violations, enhance their 

license management practices, and align their SBOM practice with Software Asset Management (SAM) 

and IT Asset Management (ITAM) systems for enterprise visibility. 

Solutions supporting the Software Development Life Cycle (SDLC) typically involve open-source license 

compliance or intellectual property use cases. Whereas Software Asset Management (SAM) is primarily 

concerned with commercial license and procurement use cases. OWASP CycloneDX has extensive 

support for both and can be applied to any component or service within a BOM. 

Outdated Component Analysis 

Relying on outdated components can have a significant impact on the security, stability, and performance 

of the software. Outdated components may have known vulnerabilities that can be exploited by attackers, 

leading to data breaches or other security issues. Additionally, newer versions of components may 

include bug fixes or performance improvements that can enhance the overall functionality of the software. 

Updating components is not a one-time task but a continuous process. New vulnerabilities and bugs are 

constantly being discovered, and the latest updates are being released to fix them. Thus, it is crucial to 

regularly check for updates and keep components up to date. Ignoring updates and running software with 

outdated components can lead to increased time to mitigate vulnerabilities should a previously unknown 

vulnerability become known. 
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Identifying end-of-life components can be challenging as the data may be difficult to obtain. However, 

some sources of commercial vulnerability intelligence do provide this data, and also help identify up-to-

date components that are otherwise no longer supported. 

Provenance 

Provenance refers to the history of the origin and ownership of a component. In the context of a software 

supply chain, provenance provides a way to trace the lineage of a component and ensure its authenticity 

is in alignment. 

Provenance information can help software developers and users identify the source of a component, and 

helps to establish trust and accountability among different parties involved in the software supply chain, 

such as software vendors, distributors, and consumers. 

By maintaining a record of provenance information throughout the software supply chain, organizations 

can improve their ability to detect and mitigate security risks, reduce the likelihood of supply chain 

attacks, and increase the overall reliability and quality of their software products. 

Furthermore, regulatory compliance requirements (such as those related to data privacy, data protection, 

and intellectual property) often mandate the use of provenance tracking to ensure compliance with legal 

and ethical standards. 

CycloneDX supports provenance via four distinct fields: author, publisher, supplier, and manufacturer. In 

addition, components that are modified from the original can be described along with the complete 

authorship, including commits and the person or account that authored and committed the modifications. 

Pedigree 

CycloneDX can represent component pedigree, including ancestors, descendants, and variants that 

describe component lineage from any viewpoint and the commits, patches, and diffs which make it 

unique. The addition of a digital signature applied to a component with detailed pedigree information 

serves as an affirmation of the accuracy of the pedigree. 

Maintaining accurate pedigree information is especially important with open-source components whose 

source code is readily available, modifiable, and redistributable. Identifying changes to a component or a 

components coordinates along with information describing the original component, may be necessary for 

the analysis of various forms of risk. 

Refer to the "Relationships" chapter for detailed information on pedigree. 

Foreign Ownership, Control, or Influence (FOCI) 

Foreign Ownership, Control, or Influence (FOCI) is a critical concern in the software supply chain that 

should be taken seriously by all organizations involved. FOCI refers to the degree to which foreign entities 

have control or influence over the operations or assets of companies in another government's jurisdiction. 

FOCI is a term specific to the U.S., but many world governments have similar concepts. 

Indicators that may be relevant in identifying FOCI concerns can be derived from several fields, including 

author, publisher, manufacturer, and supplier but can also be extended to other fields such as the 

components group name. The CPE may also indicate the vendor and the PURL can identify a potentially 

foreign namespace or repository or download URL for the package. Many external references may also 

provide a clue, especially those pointing to the version control system (vcs) and commit history, issue 

tracker, distribution, and documentation websites. 

Commercial sources of supply chain intelligence, including both physical and cyber, are available and can 

aid in identifying FOCI and other supply chain risk. 
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Export Compliance 

CycloneDX can help organizations achieve export compliance in the software supply chain by providing a 

comprehensive inventory of all software components used in a product, including their origin, version, and 

licensing. This information can enable organizations to identify potential export control issues, such as 

using components developed in foreign countries or containing encryption technology, and take 

appropriate measures to ensure compliance. 

Procurement 

Purchasing of software and IT assets can be enhanced with bill of materials. Model contract language 

that would require BOMs for all new procurements and renewals of deployable software and any IT asset 

containing software should be considered. Sourcing may then strategically favor vendors who provide 

BOMs or further negotiate costs with vendors that don't. Procurement processes can be enhanced to 

request BOMs from vendors, which may then be consumed by the procurement system and shared with 

enterprise Software Asset Management (SAM) or IT Asset Management (ITAM) systems. Automating 

BOM requests, retrieval, consumption, and sharing across systems should be considered for 

organizations on a quest for digital transformation. 

Vendor Risk Management 

A Vendor Risk Assessment (VRA) is a process used to identify and evaluate potential risks or hazards 

associated with a vendor's operations and products and their potential impact on an organization. VRA is 

part of an overall Vendor Risk Management process. VRAs are often an integrated part of the 

procurement process for new vendors. VRAs may also be triggered periodically for existing vendors. VRA 

processes can be enhanced through the use of BOMs. With BOMs, not only can the supplier of the 

software or asset can be evaluated, but every supplier of the constituent components that make up the 

software or asset can be evaluated. Additionally, the report from a VRA can be specified in CycloneDX 

using the risk-assessment external reference type. The transparency that CycloneDX BOMs provide can 

result in more impactful assessments and significant risk reduction. 

Supply Chain Management 

Supply chain management is a strategic discipline that encompasses the coordinated planning, 

implementation, and control of the flow of goods, services, and information from the point of origin to the 

point of consumption. It involves a systematic approach to optimizing every aspect of the supply chain. 

Dr. W. Edwards Deming, a renowned quality management expert, emphasized the importance of 

collaboration, data-driven decision-making, and a relentless pursuit of excellence throughout the entire 

supply chain. Deming believed that by focusing on quality and process improvement, organizations can 

achieve higher levels of customer satisfaction and long-term success. 

Deming's supply chain management strategy included using fewer and better suppliers, utilizing the best 

quality components from those suppliers, and tracking component usage across the entire supply chain. 

By focusing on fewer suppliers, organizations can reduce variability and drive efficiency. Deming 

emphasized the importance of selecting suppliers who consistently deliver top-quality components, which 

improves the overall quality of products or services. Additionally, tracking component usage across the 

supply chain allows organizations to identify inefficiencies, optimize processes, and eliminate waste. 

Supply chain management of physical goods shares several similarities with software supply chain 

management. Both disciplines involve sourcing, production, distribution, and inventory management to 

ensure the smooth flow of goods or software throughout the supply chain. Just as physical goods move 

from suppliers to manufacturers to end-users, software components are sourced, developed, and 

integrated to create a final software product. While there are differences in the nature of the products 

being managed, the core principles of efficient sourcing, production, and distribution are applicable to 

physical goods and software. 
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CycloneDX BOMs play a crucial role in supply chain management as they enhance collaboration and 

enable effective supply chain management and governance of software components from sourcing to 

deployment. 

Composition Completeness and "Known Unknowns" 

The inventory of components, services, and their relationships to one another can be described through 

the use of compositions. Compositions describe constituent parts (including components, services, and 

dependency relationships) and their completeness. The completeness of vulnerabilities expressed in a 

BOM may also be described. This allows BOM authors to describe how complete the BOM is or if there 

are components in the BOM where completeness is unknown. 

Formulation Assurance and Verification 

CycloneDX can describe declared and observed formulations for reproducibility throughout the product 

lifecycle of components and services. This advanced capability provides transparency into how 

components were made, how a model was trained, or how a service was created or deployed. Generally, 

the formulation is externalized from the SBOM into a dedicated Manufacturing Bill of Material (MBOM). 

The SBOM references the MBOM that describes the environment, configuration, tools, and all other 

considerations necessary to replicate a build with utmost precision. This capability allows other parties to 

independently verify inputs and outputs from a build which can increase the software's assurance. 

Cryptography Asset Management 

CycloneDX can describe a comprehensive inventory of cryptographic assets, encompassing keys, 

certificates, tokens, and more. This is a requirement of the OMB M-23-02, where such a system is 

characterized as a [...”software or hardware implementation of one or more cryptographic algorithms that 

provide one or more of the following services: (1) creation and exchange of encryption keys; (2) 

encrypted connections; or (3) creation and validation of digital signatures.”] 

CycloneDX provides a structured framework for organizations to catalog and track their cryptographic 

resources, facilitating efficient management and ensuring security and compliance standards are met. By 

maintaining a detailed record of cryptographic assets, including their usage, expiration dates, and 

associated metadata, CycloneDX enables proactive monitoring and streamlined auditing processes. With 

CycloneDX, organizations can effectively safeguard their cryptographic infrastructure, mitigate risks 

associated with unauthorized access or misuse, and maintain the integrity and confidentiality of sensitive 

data across diverse digital environments. 

Identifying Weak Cryptographic Algorithms 

CycloneDX enables organizations to discover weak algorithms or flawed implementations that could 

compromise security. Through analysis of cryptographic data, including algorithms, key management 

practices, and usage patterns, organizations can pinpoint areas of concern and prioritize remediation 

efforts. CycloneDX facilitates proactive identification of weaknesses and vulnerabilities, allowing 

organizations to enhance the resilience of their cryptographic infrastructure and mitigate the risk of 

exploitation, thereby bolstering overall cybersecurity posture and safeguarding sensitive data against 

potential threats. 

Post-Quantum Cryptography (PQC) Readiness 

CycloneDX is crucial in preparing applications and systems for an impending post-quantum reality, 

aligning with guidance from the National Security Agency (NSA) and the National Institute of Standards 

and Technology (NIST). As quantum computing advancements threaten the security of current 

cryptographic standards, CycloneDX provides a structured approach to inventorying cryptographic 

assets and evaluating their resilience against quantum threats. 

 

 

 

https://www.whitehouse.gov/wp-content/uploads/2022/11/M-23-02-M-Memo-on-Migrating-to-Post-Quantum-Cryptography.pdf
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Most notably, public key algorithms like RSA, DH, ECDH, DSA or ECDSA are considered not quantum-

safe. These algorithms occur in various components and may be hardcoded in applications but are more 

commonly and preferably used via dedicated cryptographic libraries or services. Developers often don’t 

directly interact with cryptographic algorithms such as RSA or ECDH but use them via protocols like TLS 

1.3 or IPsec, by using certificates, keys, or other tokens. With upcoming cryptographic agility it becomes 

less common to put in stone (or software) the algorithms that will be used. Instead, they are configured 

during deployment or negotiated in each network protocol session. CycloneDX is designed with these 

considerations in mind and to allow insight into the classical and quantum security level of cryptographic 

assets and their dependencies. 

By cataloging cryptographic algorithms and their respective parameters, CycloneDX enables 

organizations to identify vulnerable or weak components that require mitigation or replacement with 

quantum-resistant alternatives recommended by NSA and NIST. Through comprehensive analysis and 

strategic planning facilitated by CycloneDX, organizations can proactively transition to post-quantum 

cryptographic primitives, ensuring the long-term security and integrity of their systems and applications. 

Assess Cryptographic Policies and Advisories 

A cryptographic inventory in machine-readable form brings benefits if one wants to check for compliance 

with cryptographic policies and advisories. An example of such an advisory is CNSA 2.0, which was 

announced by NSA in September of 2022. CNSA 2.0 states, among other things, that National Security 

Systems (NSS) for firmware and software signing needs to support and prefer CNSA 2.0 algorithms by 

2025 and exclusively use them by 2030. The advised algorithms are the stateful hash-based signature 

schemes LMS and XMSS from NIST SP 800-208. With a cryptographic inventory that documents the use 

of LMS and XMSS by such systems, compliance with CNSA 2.0 can be assessed in an automated way. 

Identify Expiring and Long-Term Cryptographic Material 

CycloneDX significantly enhances the ability to identify and manage the risks associated with expiring and 

long-term cryptographic material. For instance, an RSA certificate set to expire in one week inherently 

presents a lower cryptographic risk compared to an identical certificate with a 20-year expiry period. This 

consideration is crucial, as an expired certificate can lead to significant service downtime, compounding 

the risk to operational security and reliability. 

Ensure Cryptographic Certifications 

Higher cryptographic assurance is provided by certifications such as FIPS 140-3 (levels 1 to 4) or 

Common Criteria (EAL1 to 7). To obtain these certifications, cryptographic modules need to undergo 

certification processes. For regulated environments such as FedRAMP, such certifications are important 

requirements. CycloneDX allows the capture of certification levels of cryptographic assets so that this 

property can be easily identified. 

  

 

 

 

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
https://csrc.nist.gov/pubs/fips/140-3/final
https://www.commoncriteriaportal.org/
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BOM Coverage, Maturity, and Quality 

NTIA Minimum Elements 

The U.S. National Telecommunications and Information Administration (NTIA) defines the following 

minimum elements of an SBOM. They are: 

Field CycloneDX Field Description 

Supplier bom.metadata.supplier, 

bom.components[].supplier 

The name of an entity that creates, 

defines, and identifies components. 

Component 

Name 

bom.components[].name Designation assigned to a unit of software 

defined by the original supplier. 

Component 

Version 

bom.components[].version Identifier used by the supplier to specify a 

change in software from a previously 

identified version. 

Other Unique 

Identifiers 

bom.components[].cpe,purl,swid Other identifiers that are used to identify a 

component, or serve as a look-up key for 

relevant databases. 

Dependency 

Relationship 

bom.dependencies[] Characterizing the relationship that an 

upstream component X is included in 

software Y. 

Author of SBOM 

Data 

bom.metadata.author The name of the entity that creates the 

SBOM data for this component. 

Timestamp bom.metadata.timestamp Record of the date and time of the SBOM 

data assembly. 

 

CycloneDX highly encourages organizations to exceed the NTIA minimum elements whenever possible. 

Suggestions for other types of data will vary by use case but generally should include: 

Field CycloneDX Field Description 

BOM Lifecycles bom.metadata.lifecycles[] The stage in which data in the BOM was 

captured 

BOM 

Generation 

Tools 

bom.metadata.tools[] The tool(s) used to create the BOM 

Component 

Hash 

bom.components[].hashes[] The hash values of the file or package 

 

 

 

https://ntia.gov/
https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
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Field CycloneDX Field Description 

Component 

License 

bom.components[].licenses[] The license(s) in which the component 

is released under 

Component 

Evidence 

bom.components[].evidence[].identity.* The evidence of identity including the 

methods, techniques, and confidence of 

how components were identified 

Cryptographic 

Properties 

bom.components[].cryptoProperties.* The properties specific to cryptographic 

assets detailing the algorithms, keys, 

protocols, and other cryptographic 

material 

External 

References 

bom.components[].externalReferences[] Locations to advisories, version control 

and build systems, etc 

Services bom.services[].* A complete inventory of services 

including endpoint URLs, data 

classifications, etc which the product 

and/or individual components rely on 

Known 

Unknowns 

bom.compositions[].* Assertions on the completeness of the 

inventory of components and services, 

along with the completeness of 

dependency relationships 

SCVS BOM Maturity Model 

The OWASP Software Component Verification Standard (SCVS) is a way for organizations to measure 

and improve their software supply chain assurance. SCVS is required in NIST SP 800-218 (SSDF v1.1) 

and similar frameworks. 

In addition to the supply chain controls it recommends, SCVS also has a complementary BOM Maturity 

Model which allows bill of materials to be evaluated. The model consists of: 

• a formal taxonomy of different types of data possible in a bill of materials, independent of BOM 

format 

• a unique identifier, description, and other metadata about each item in the taxonomy 

• the level of complexity or difficulty in supporting different types of data 

The model can be used to evaluate: 

• Incoming BOMs adherance to organizational policy by supporting the data required by various 

stakeholders 

• BOM generation and consumption tools 

• Current and future BOM formats against each other and their alignment with organizational 

requirements 

Combined with the ability to create profiles, SCVS will facilitate: 

 

 

 

https://scvs.owasp.org/
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://scvs.owasp.org/bom-maturity-model/
https://scvs.owasp.org/bom-maturity-model/
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• The creation of a new breed of tools (SBOM Profilers) which evaluate BOMs against various 

profiles so that end users may know what types of analysis can be performed on them 

• The adoption of organizational policy, defined in profiles, for what is acceptable and not 

acceptable for various use cases 

SBOM Quality 

SBOMs can be analyzed for their overall usefulness for given use cases. The "quality" of an SBOM may 

differ depending on the stakeholder role and type of analysis required for that role. Quality is a 

multidimensional construct and not a single characteristic. OWASP supports a holistic view of quality. The 

following illustrates an example of dimensions to consider in determining quality. 

 

Dimension Support Description 

Breadth SCVS The coverage in the types of data represented within a BOM. 

Depth SCVS The amount of detail or difficulty needed to represent data within a BOM. 

Lifecycles CycloneDX The number of lifecycles or the favorability of specific lifecycles in the 

creation of a BOM. 

Techniques CycloneDX The approaches used to determine component identity. 

Confidence CycloneDX The confidence of individual techniques, and the analysis of the sum of all 

techniques used to identity components. 

 

The OWASP SCVS BOM Maturity Model is a formal taxonomy of different types of data possible in a Bill 

of Materials along with the level of complexity or difficulty in supporting different types of data. The BOM 

Maturity Model can be used as the basis for the Breadth and Depth dimensions. 

Lifecycles are supported in CycloneDX. Refer to the "Lifecycle Phases" chapter for more information. 

Evidence is also a capability of CycloneDX. Identity evidence consists of: 

• The field for which the evidence describes (name, version, purl, etc) 

• The overall confidence derived from all supporting evidence 

 

 

 

https://scvs.owasp.org/bom-maturity-model/
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• The methods which include the techniques used to determine component identity and the 

confidence of each technique 

• The tools used which performed the analysis 

Together, the BOM Maturity Model and native features of CycloneDX can be leveraged to form a high-

quality, high-confidence assessment of SBOM quality. 
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Generating CycloneDX BOMs 

There are many ways to generate BOMs, each method having various trade-offs. CycloneDX 

recommends organizations establish a process around BOM generation that aligns with the needs of the 

business and that of the BOM consumer. In practice, BOM generation is a process, not a one-time event. 

As organizations mature their BOM efforts and consumers expect increased accuracy and expanded 

data, having an established process that can accommodate multiple generation methods and the ability 

to augment and correct BOM data throughout the generation process will provide strategic advantages. 

The following process is the path most traveled by organizations that first adopt SBOMs. This process 

starts with SBOM generation, which is often performed during the build process, followed by consumption 

and analysis of the SBOM. Simultaneously, the SBOM is often published alongside the artifacts that result 

from the build process. 

 

 

 

For some organizations, the process above is where their journey ends. However, for many other 

organizations, it's just the start. OWASP recommends that SBOM creation become an integrated and 

repeatable process aiming to achieve accurate and trustworthy results. The following is an example 

workflow that illustrates SBOM creation, verification, and enrichment using multiple tools and techniques. 

 

 

 

The benefits of this approach are numerous. It starts with SBOM generation in the build lifecycle. This 

typically involves a plugin specific to the build tool used, which often generates the most accurate and 

complete set of initial results. Build plugins often rely on manifests that can be manipulated or, in the case 

of unmanaged dependencies, may not include all dependent components. 

The verification stage may involve specialized tools that perform different types of analysis against the 

build artifacts and compare the findings to the results in the SBOM. If there are deltas, then the resulting 

SBOM may need to be corrected. 

One common scenario where correction often occurs is with modified or forked components. Manifest 

and binary analysis typically falls short in properly identifying modified components. Tools may identify the 

component as being modified or the upstream version but generally cannot distinguish what the 

modifications were, who made them, or for what purpose. Open source is the ultimate supply chain. 

Components can and will be modified. Often these modifications are to add new features or to backport 

security fixes. Describing these modifications in the SBOM greatly increases its accuracy and the 

perceived trustworthiness of the SBOM and the vendor who provided it. Tracking modifications is referred 

to as "pedigree" and is covered later in the "Relationships" chapter. 
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As the SBOM process evolves, it may become an integrated part of building software. One vision of this 

type of process comes from DJ Schleen who proposed the following reference architecture: 

 

The content in this architecture is beyond the scope of this guide, but is provided to illustrate what is 

possible using freely available open source tools. 

Approaches to Generating CycloneDX SBOMs 

There are many approaches to generating SBOMs. Each has its strengths, but all provide value in an 

SBOM process. Common approaches are listed below along with the lifecycles they could be executed 

in. 

Approach Lifecycles Description 

Build Plugin Build Specialized tool that integrates directly into native build systems 

Software 

Factory 

Pre Build, Build, 

Post Build 

An approach whereby the system that orchestrates builds directly 

generates SBOMs 

SCA Pre Build, Build, 

Post Build 

Software Composition Analysis, which may inspect manifests in 

version control pre-build, be integrated into builds, or perform 

analysis of built artifacts post-build 

IAST/RASP Post Build, 

Operations 

Specialized tool that often involves instrumentation against running 

systems 

Each approach may use multiple methods and techniques to identify components and other relevant 

data. The techniques used, the confidence, and call stack reachability can all be described granularly at 

the component level in CycloneDX. Refer to the "Evidence" chapter for more information. 
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Generating SBOMs for Source Files 

SBOMs may describe individual source files and other digital assets in a directory or version control 

system. These types of SBOMs typically include file components, file hashes, and evidence of license and 

copyright statements. The primary purpose of this type of BOM is for license compliance and intellectual 

property use cases. They may also be used as an OpenChain Compliance Artifact. Oftentimes, license 

attribution reports can be derived from source SBOMs. Generating SBOMs from source files typically 

occur in the "pre build" lifecycle. 

Integrating CycloneDX Into The Build Process 

Integrating SBOM generation into the software's build system is the preferred starting point for producing 

SBOMs for cybersecurity use cases. Modern build systems rely on package manifests which describe the 

intent to use specific dependencies. Examples of manifests include pom.xml (Java/Maven), package-

lock.json (Javascript/npm), and requirements.txt (Python). 

There are three primary strategies for producing SBOMs during a build. 

• Integration into build lifecycle 

• Analyzing build artifacts external to lifecycle 

• Software factory 

Build Lifecycle vs. External to Lifecycle 

Many build systems have a "lifecycle" that can affect dependency resolution. These lifecycles are often 

configurable by the developers and can profoundly affect component inventory and versions. For 

example, Maven resolves dependencies as it progresses through its lifecycle. A Maven build may also 

include optional profiles, which can alter what dependencies are included or excluded from the final 

deliverable. Analyzing pom.xml outside of Mavens' lifecycle will typically lead to erroneous results. On the 

Javascript front, many plugins to npm or web frameworks can dramatically affect component inventory. 

For example, many web frontends are optimized using a process called bundling which removes unused 

dependencies and/or functions through a process called "tree-shaking" and aggregates the Javascript 

into highly optimized bundles for efficient delivery to web and mobile browsers. In these scenarios, relying 

on package-lock.json as the source of truth would lead to an erroneous SBOM containing an inventory of 

components that are not distributed in the final artifact. In the case of software vendors, it is important 

only to include the components that are distributed with the final software. Not doing so may lead to 

increased and unnecessary support costs. 

Software Factory 

Integrating into individual builds, especially a build's lifecycle, has many advantages but generally takes 

more effort. Another approach is to target the generation at the software factories themselves. Software 

factories often comprise Continuous Integration and Continuous Delivery (CI/CD) systems. Organizations 

may customize their CI/CD environment to optimize software delivery and increase the efficiency of 

onboarding new software projects. A strategic option for many organizations is to reduce the effort 

necessary to create SBOMs by automating as much as possible. Once configured, generating SBOMs 

from software factories allows organizations to produce SBOMs for many software projects with little to 

no effort. GitHub Actions, GitLab Runners, Jenkins libraries, and Circle CI orbs are often used as the 

foundation for many software factories. While this approach can quickly scale across an organization, the 

accuracy of the SBOMs may be impacted as the software factories orchestrate the build tools; they are 

not directly part of the build systems lifecycle. 
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Generating BOMs at Runtime 

Analyzing source files or build manifests has some limitations. They do not capture the environment in 

which the software is being run, the system dependencies that are used, which are not specified in the 

source files or manifests, and will be limited to the inventory of software components. Generating SBOMs 

at runtime is often achieved through observability or instrumentation. Examples of platforms capable of 

runtime generation include: 

• Interactive Application Security Testing (IAST) 

• Mobile Application Security Testing (MAST) 

Generating SBOMs at runtime has many benefits including: 

• Capturing the dependencies that are invoked and those which are not 

• Capturing system dependencies of the underlying platform or operating system 

• Capturing information and configuration about the runtime environment 

• Capturing the use and reliance on external services such as those provided via HTTP and MQTT 

The platforms capable of runtime generation are often used as part of the software's testing phase and 

orchestrated by CI systems. In addition, many IAST platforms also double as RASP (Runtime Application 

Security Protection) and can proactively mitigate specific types of attacks automatically. 

Generating BOMs From Evidence (from binaries) 

Oftentimes, especially for legacy software, the source or build files may not be available, and runtime 

instrumentation may not be possible. In these cases, analyzing the binary artifacts may be necessary. 

These same approaches may also be used by security firms specializing in firmware forensics associated 

with medical, IoT, and other types of devices. 

Refer to the "Evidence" chapter for more information. 

Building CycloneDX BOMs Manually 

CycloneDX evolved in the era of DevSecOps and has a strong focus on being highly automatable. Most 

CycloneDX tools are also focused on automation. However, some ecosystems such as C/C++ continue to 

mostly rely on unmanaged dependencies despite the availability of package managers. In these 

situations, manually managing dependencies often requires manual SBOM generation. Several tools exist 

to accomplish this task including OWASP Dependency-Track. 

  

 

 

 

https://dependencytrack.org/
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Consuming CycloneDX BOMs 

Consuming CycloneDX BOMs can be done efficiently using various tools specifically designed to ingest 

and analyze BOMs. In general, there are three classifications of tools. They are: 

 

1. BOM Tools: This classification of tool is generally small, purpose-built, and often a command-line 

utility. These types of tools generally focus on vulnerability scanning, license compliance, or 

dependency analysis. While there are many tools that provide this functionality, a few honorable 

open source mentions are Bomber, dep-scan, Grype, and Trivy. All these tools can accept 

CycloneDX BOMs as input and analyze them for known security risk. 

2. BOM Platforms: These higher complexity tools offer robust and collaborative features and are 

generally purpose-built for BOM consumption. They typically consume BOMs from CI/CD 

pipelines or external systems, such as procurement. Notable open source projects in this 

category are GUAC, a supply chain intelligence platform, and OWASP Dependency-Track, a 

reference platform for BOM consumption and analysis. 

3. Enterprise Platforms: Often times these are large CMDB's or similar systems that provide a wide-

range of IT, procurement, and business applications. These platforms are typically more general-

purpose, capable of a wide range of use cases, including SBOM consumption. 

For a list of known tools that support the CycloneDX standard, visit the CycloneDX Tool Center. 

  

 

 

 

https://github.com/devops-kung-fu/bomber
https://github.com/AppThreat/dep-scan
https://github.com/anchore/grype
https://trivy.dev/
https://guac.sh/
https://dependencytrack.org/
https://cyclonedx.org/tool-center/
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Leveraging Data Components 

Data components provide the ability to inventory data as part of a bill of material. This specialized type of 

component benefits from all the other capabilities that CycloneDX provides, including tracking the 

provenance and pedigree of data. 

A data "type" describes the general theme or subject matter of the data being specified. The following are 

supported types: 

Type Description 

configuration Parameters or settings that may be used by other components. 

dataset A collection of data. 

definition Data that can be used to create new instances of what the definition defines. 

source-code Any type of code, code snippet, or data-as-code. 

other Any other type of data that does not fit into existing definitions. 

 

To help visualize a typical scenario, let's describe an application with a few different data components that 

represent custom source code and configurations bundled in an application. 

 

Other possible scenarios include: 

• Inclusion of all source code that makes up a component. 

• Inclusion of inline datasets bundled with a component. 

• Externalizing the data components using an External Reference of type 'bom'. 

• Leveraging CycloneDX lifecycles and External References to create an Operations Bill of 

Materials (OBOM) linking the SBOM of the application, the HBOM of the hardware it's running 

on, and describing the runtime configuration of the system in the OBOM. 
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This example, similar to the previous illustration, involves Acme Application which includes the Javascript 

source code for a shutdown hook. In this case, both are from different suppliers. 

"components": [ 
  { 
    "bom-ref": "acme-application", 
    "type": "application", 
    "name": "Acme Application", 
    "version": "1.0.0", 
    "supplier": { "name": "Acme Inc" }, 
    "components": [ 
      { 
        "type": "data", 
        "name": "Shutdown Hook", 
        "supplier": { "name": "Example Company" },       
        "data": [ 
          { 
            "type": "source-code", 
            "contents": { 
              "attachment": { 
                "contentType": "text/javascript", 
                "encoding": "base64", 
                "content": "Y29uc29sZS5sb2coJ0dvb2RCeWUnKQ==" 
              } 
            } 
          } 
        ] 
      } 
    ] 
  } 
] 

CycloneDX does not attempt to normalize configurations into a common vocabulary. Systems and 

applications may have specialized ways of representing configurations that are specific to them. Rather, 

CycloneDX leverages existing support for name/value pairs (properties), attachments, and URLs to 

external resources. With this approach, common and specialized configuration mechanisms are 

supported. Consumers of BOMs with data components will need to understand the context and 

semantics of the data specified. 
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Introduction to Cryptographic Components 

CycloneDX can describe cryptographic assets and their dependencies. Discovering, managing, and 

reporting on cryptographic assets is necessary as the first step on the migration journey to quantum-safe 

systems and applications. Cryptography is typically buried deep within components that are used to 

compose and build systems and applications. 

Advances in quantum computing introduce the risk of previously-secure cryptographic algorithms 

becoming compromised faster than ever before. In May of 2022, the White House released a National 

Security Memorandum outlining the government’s plan to secure critical systems against potential 

quantum threats. This memorandum contains two key takeaways for both agency and commercial 

software providers: document the potential impact of a breach, and have an alternative cryptography 

solution ready. 

As cryptographic systems evolve from using classical primitives to quantum-safe primitives, there is 

expected to be more widespread use of cryptographic agility, or the ability to quickly switch between 

multiple cryptographic primitives. Cryptographic agility serves as a security measure or incident response 

mechanism when a system’s cryptographic primitive is discovered to be vulnerable or no longer complies 

with policies and regulations. 

As part of an agile cryptographic approach, organizations should seek to understand what cryptographic 

assets they are using and facilitate the assessment of the risk posture to provide a starting point for 

mitigation. 

The following is a high-level architecture illustrating how cryptographic assets are implemented in 

CycloneDX. 

 

Organizations should consider including cryptographic assets in their SBOMs and optionally producing a 

BOM specific for cryptographic material, otherwise known as a Cryptographic Bill of Material (CBOM). 

Refer to the Authoritative Guide to CBOM for in-depth information about leveraging CycloneDX for 

cryptographic use cases. 

  

 

 

 

https://www.whitehouse.gov/briefing-room/statements-releases/2022/05/04/national-security-memorandum-on-promoting-united-states-leadership-in-quantum-computing-while-mitigating-risks-to-vulnerable-cryptographic-systems/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/05/04/national-security-memorandum-on-promoting-united-states-leadership-in-quantum-computing-while-mitigating-risks-to-vulnerable-cryptographic-systems/
https://cyclonedx.org/guides/
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Algorithm Example 

A cryptographic algorithm is added in the components array of the BOM. The examples below list the 

algorithm AES-128-GCM. 

"components": [ 
  { 
    "type": "cryptographic-asset", 
    "name": "AES-128-GCM", 
    "cryptoProperties": { 
      "assetType": "algorithm", 
      "algorithmProperties": { 
        "primitive": "ae", 
        "parameterSetIdentifier": "128", 
        "mode": "gcm", 
        "executionEnvironment": "software-plain-ram", 
        "implementationPlatform": "x86_64", 
        "certificationLevel": [ "none" ], 
        "cryptoFunctions": [ "keygen", "encrypt", "decrypt", "tag" ], 
        "classicalSecurityLevel": 128, 
        "nistQuantumSecurityLevel": 1 
      }, 
      "oid": "2.16.840.1.101.3.4.1.6" 
    } 
  } 
] 
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License Compliance 

CycloneDX facilitates open-source and commercial license compliance. By leveraging the licensing 

capabilities of CycloneDX, organizations can identify any licenses that may be incompatible or require 

specific compliance obligations, such as attribution or sharing of source code. 

Open Source Licensing 

The following is an example of a components license. CycloneDX communicates this information using 

the SPDX license IDs along with optionally including a Base64 encoded representation of the full license 

text. 

"licenses": [ 
  { 
    "license": { 
      "id": "Apache-2.0", 
      "acknowledgement": "declared", 
      "text": { 
        "contentType": "text/plain", 
        "encoding": "base64", 
        "content": "RW5jb2RlZCBsaWNlbnNlIHRleHQgZ29lcyBoZXJlLg==" 
      }, 
      "url": "https://www.apache.org/licenses/LICENSE-2.0.txt" 
    } 
  } 
] 

SPDX license expressions are also fully supported. 

"licenses": [ 
  { 
    "expression": "(LGPL-2.1 OR BSD-3-Clause AND MIT)", 
    "acknowledgement": "declared" 
  } 
] 

Declared and Concluded Licenses 

Declared licenses and concluded licenses represent two different stages in the licensing process within 

software development. Declared licenses refer to the initial intention of the software authors regarding the 

licensing terms under which their code is released. On the other hand, concluded licenses are the result 

of a comprehensive analysis of the project's codebase to identify and confirm the actual licenses of the 

components used, which may differ from the initially declared licenses. While declared licenses provide 

an upfront indication of the licensing intentions, concluded licenses offer a more thorough understanding 

of the actual licensing within a project, facilitating proper compliance and risk management. 

Acknowledgement Description 

declared Declared licenses represent the initial intentions of authors regarding the licensing 

terms of their code. 

concluded Concluded licenses are verified and confirmed. 
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Using Evidence To Substantiate Concluded Licenses and Track Copyrights 

In addition to asserting the declared or concluded license(s) of a component, CycloneDX also supports 

evidence of other licenses and copyrights found in a given component. These licenses are "observed" in 

the course of analyzing a software project and form the necessary evidence to substantiate a "concluded" 

license. For example: 

"evidence": { 
  "licenses": [ 
    { "license": { "id": "Apache-2.0" } }, 
    { "license": { "id": "LGPL-2.1-only" } } 
  ], 
  "copyright": [ 
    { "text": "Copyright 2012 Acme Inc. All Rights Reserved." }, 
    { "text": "Copyright (C) 2004,2005 University of Example" } 
  ] 
} 

Refer to the "Evidence" chapter for more information. 

Commercial Licensing 

CycloneDX can also help organizations manage their commercial software licenses by providing a clear 

understanding of what licenses are in use and which ones require renewal or additional purchases, which 

may impact the operational aspects of applications or systems. By leveraging CycloneDX for commercial 

license compliance, organizations can reduce the risks associated with license violations, enhance their 

license management practices, and align their SBOM practice with Software Asset Management (SAM) 

and IT Asset Management (ITAM) systems for enterprise visibility. 

The following example illustrates a commercial license for a given component. 

"licenses": [ 
  { 
    "license": { 
      "name": "Acme Commercial License", 
      "licensing": { 
        "licensor": { 
          "organization": { "name": "Acme Inc" } 
        }, 
        "licensee": { 
          "organization": { "name": "Example Co." } 
        }, 
        "purchaser": { 
          "individual": { 
            "name": "Samantha Wright", 
            "email": "samantha.wright@gmail.com", 
            "phone": "800-555-1212" 
          } 
        }, 
        "purchaseOrder": "PO-12345", 
        "licenseTypes": [ "appliance" ], 
        "lastRenewal": "2022-04-13T20:20:39+00:00", 
        "expiration": "2023-04-13T20:20:39+00:00" 
      } 
    } 
  } 
] 
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All commercial license fields are optional. The licensor, licensee, and purchaser may be an organization 

or individual. Multiple license types may be specified and include: 

License Type Description 

academic A license that grants use of software solely for the purpose of education or research. 

appliance A license covering use of software embedded in a specific piece of hardware. 

client-access A Client Access License (CAL) allows client computers to access services provided 

by server software. 

concurrent-

user 

A Concurrent User license (aka floating license) limits the number of licenses for a 

software application and licenses are shared among a larger number of users. 

core-points A license where the core of a computer's processor is assigned a specific number of 

points. 

custom-metric A license for which consumption is measured by non-standard metrics. 

device A license that covers a defined number of installations on computers and other types 

of devices. 

evaluation A license that grants permission to install and use software for trial purposes. 

named-user A license that grants access to the software to one or more pre-defined users. 

node-locked A license that grants access to the software on one or more pre-defined computers or 

devices. 

oem An Original Equipment Manufacturer license that is delivered with hardware, cannot 

be transferred to other hardware, and is valid for the life of the hardware. 

perpetual A license where the software is sold on a one-time basis and the licensee can use a 

copy of the software indefinitely. 

processor-

points 

A license where each installation consumes points per processor. 

subscription A license where the licensee pays a fee to use the software or service. 

user A license that grants access to the software or service by a specified number of 

users. 

other Another license type. 

Solutions supporting the Software Development Life Cycle (SDLC) typically involve open-source license 

compliance or intellectual property use cases. Whereas Software Asset Management (SAM) is primarily 

concerned with commercial license and procurement use cases. OWASP CycloneDX has extensive 

support for both and can be applied to any component or service within a BOM. 
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Security and Quality Considerations for Tracking Commercial Licenses 

When a commercial software license expires or the software has reached its licensed limits, a cascading 

series of events may occur, leading to security and quality issues, posing significant risks to users and 

systems. One of the immediate concerns is the denial of service, where the software ceases to function. If 

the software is part of a larger system, the entirety of the system may be at risk. Moreover, expired or 

exceeded licenses may trigger altered application behavior, as certain features or functionalities tied to 

the license may become disabled or restricted. This alteration can introduce instability, unexpected 

errors, or even malicious behavior, potentially compromising the integrity and confidentiality of data. 

Expired licenses may lead to being abruptly cut off from essential updates, patches, and support 

channels provided by the software vendor. This leaves systems vulnerable to newly discovered 

vulnerabilities and exploits, as security patches may no longer be available. Without access to ongoing 

support, users are left without recourse in the event of technical glitches or critical issues, leading to 

prolonged downtime and increased susceptibility to cyberattacks. Thus, ensuring software licenses 

remain current is vital for maintaining both the security and quality of software systems. 

Providing commercial license information in CycloneDX BOMs offers a comprehensive solution to these 

challenges. By including license details within BOMs, software consumers gain transparency into the 

licensing status of components used within a software application. This transparency facilitates effective 

license management, enabling organizations to track and monitor license expiration dates and renewal 

requirements. Consequently, software consumers can proactively address license expirations, ensuring 

uninterrupted access to critical support services, including software updates and security patches. 

Overall, integrating commercial license information into CycloneDX BOMs enhances security, quality, and 

compliance across the software supply chain. 
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Establishing Relationships in CycloneDX 

CycloneDX has a rich set of relationships that provide additional context and information about the 

objects in the BOM's inventory. All relationships in CycloneDX are expressed explicitly. Some 

relationships are declared through the natural use of the CycloneDX format. These include assemblies, 

dependencies, and pedigree. Other relationships are formed via references to the object's identity in the 

BOM, referred to as bom-ref. The combination of these two approaches dramatically simplifies the 

specification, providing necessary guardrails to prevent deviation of its usage and providing an easy path 

to supporting enveloped signing and other advanced usages. 

Component Assemblies 

Components in a BOM can be nested to form an assembly. An assembly is a collection of components 

that are included in a parent component. As an analogy, an automotive dashboard contains an 

instrument panel component. And the instrument panel component contains a speedometer component. 

This nested relationship is called an assembly in CycloneDX. 

Software assemblies that can be represented in CycloneDX can range from large enterprise solutions 

comprising multiple systems, to cloud-native deployments containing extensive collections of related 

micro-services. Assemblies can also describe simpler inclusions, such as software packages that contain 

supporting files. 

Assemblies, or leaves within an assembly, can independently be signed. BOMs comprising 

component assemblies from multiple suppliers can benefit from this capability. Each supplier 

can sign their respective assembly. The creator of final goods can then sign the BOM as a 

whole. 

The following example illustrates a simple component assembly. In this case, Acme Commerce Suite 

includes two other applications as part of its assembly. 

"components": [ 
  { 
    "type": "application", 
    "name": "Acme Commerce Suite", 
    "version": "2.0.0", 
    "components": [ 
      { 
        "type": "application", 
        "name": "Acme Storefront Server", 
        "version": "3.7.0", 
      }, 
      { 
        "type": "application", 
        "name": "Acme Payment Processor", 
        "version": "3.1.1", 
      } 
    ] 
  } 
] 
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In the following example, Components A-F are included in the metadata component, in this case, an 

application. Component C further includes an assembly of Components D and E which is how they were 

introduced as components of the application. An assembly is not an indication that Component C 

depends on Component D or E, rather Component C bundles Component D and E. If Component C 

depends on either D or E, dependency relationships should also be established. 

 

Service Assemblies 

Services also have assemblies and work identically to those of components. While component assemblies 

describe a component that includes another component, service assemblies describe a service with other 

services behind it. A common cloud pattern is the use of API gateways which proxy and orchestrate 

connections to relevant microservices. The microservices themselves may not be directly accessible; 

rather, they are accessed exclusively through the API gateway. For this scenario, the API gateway service 

may contain an assembly of microservices behind it. 

Dependencies 

CycloneDX provides the ability to describe components and their dependency on other components. This 

relies on a component's bom-ref to associate the component with the dependency element in the graph. 

The only requirement for bom-ref is that it is unique within the BOM. Package URL (PURL) is an ideal 

choice for bom-ref as it will be both unique and readable. If PURL is not an option or not all components 

represented in the BOM contain a PURL, then UUID is recommended. A dependency graph is capable of 

representing both direct and transitive relationships. In CycloneDX representation dependencies, a 

dependency graph SHOULD be codified to be one node deep, meaning no nested child graphs. All 

relations are on the same level. 
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The dependency graph above can be codified with the following: 

"dependencies": [ 
  { 
    "ref": "acme-app", 
    "dependsOn": [ 
      "pkg:maven/org.acme/web-framework@1.0.0", 
      "pkg:maven/org.acme/persistence@3.1.0" 
    ] 
  }, 
  { 
  "ref": "pkg:maven/org.acme/web-framework@1.0.0", 
    "dependsOn": [ 
      "pkg:maven/org.acme/common-util@3.0.0", 
      "pkg:maven/org.acme/rest-api@2.5.0" 
    ] 
  }, 
  { 
    "ref": "pkg:maven/org.acme/common-util@3.0.0", 
    "dependsOn": [] 
  }, 
  { 
    "ref": "pkg:maven/org.acme/rest-api@2.5.0", 
    "dependsOn": [] 
  } 
] 

Components that do not have dependencies MUST be declared as empty elements within 

the graph. Components not represented in the dependency graph MAY have unknown 

dependencies. It is RECOMMENDED that implementations assume this to be opaque and 

not an indicator of a component being dependency-free. 

As of CycloneDX v1.6, there are two types of dependencies: dependsOn and provides. 

Dependency 

Type 

Description 

dependsOn The bom-ref identifiers of the components or services that are dependencies of this 

dependency object. 

provides The bom-ref identifiers of the components or services that define a given specification 

or standard, which are provided or implemented by this dependency object. For 

example, a cryptographic library that implements a cryptographic algorithm. A 

component that implements another component does not imply that the 

implementation is in use. 

The dependency type, dependsOn, is leveraged by classic SBOMs to define a complete graph of direct 

and transitive dependencies. However, for cryptographic and similar assets, "provides" allows for many 

additional use cases. 
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The following example shows an application (nginx) that uses the libssl cryptographic library. This library 

implements the TLSv1.2 protocol. The relationship between the application, the library and the protocol 

can be expressed by using the dependencies properties of the SBOM standard. 

 

Refer to the Authoritative Guide to CBOM for in-depth information about leveraging CycloneDX for 

cryptographic use cases. 

  

 

 

 

https://cyclonedx.org/guides/
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External References 

External references provide a way to document systems, sites, and information that are relevant to a 

component, service, or the BOM itself. External references point to resources outside the object they're 

associated with and may be external to the BOM, or may refer to resources within the BOM. 

External references are established through a URI (URL or URN) and, therefore, can accept any URL 

scheme, including https, mailto, tel, and dns. External references may also include formally registered 

URNs such as CycloneDX BOM-Link to reference CycloneDX BOMs or any object within a BOM. BOM-

Link transforms applicable external references into relationships that can be expressed in a BOM or 

across BOMs. 

External references provide an extensible and data-rich method of forming relationships. 

Reference Type Description 

vcs Version Control System 

issue-tracker Issue or defect tracking system, or an Application Lifecycle Management (ALM) 

system 

website Website 

advisories Security advisories 

bom Bill-of-materials (SBOM, OBOM, HBOM, SaaSBOM, etc) 

mailing-list Mailing list or discussion group 

social Social media account 

chat Real-time chat platform 

documentation Documentation, guides, or how-to instructions 

support Community or commercial support 

source-

distribution 

The location where the source code distributable can be obtained. This is often an 

archive format such as zip or tgz. The source-distribution type complements use of 

the version control (vcs) type. 

distribution Direct or repository download location 

distribution-

intake 

The location where a component was published to. This is often the same as 

"distribution" but may also include specialized publishing processes that act as an 

intermediary 

license The URL to the license file. If a license URL has been defined in the license node, it 

should also be defined as an external reference for completeness 

build-meta Build-system specific meta file (i.e. pom.xml, package.json, .nuspec, etc) 
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Reference Type Description 

build-system URL to an automated build system 

release-notes URL to release notes 

security-contact Specifies a way to contact the maintainer, supplier, or provider in the event of a 

security incident. Common URIs include links to a disclosure procedure, a mailto 

(RFC-2368) that specifies an email address, a tel (RFC-3966) that specifies a 

phone number, or dns (RFC-4501) that specifies the records containing DNS 

Security TXT 

model-card A model card describes the intended uses of a machine learning model, potential 

limitations, biases, ethical considerations, training parameters, datasets 

log A record of events that occurred in a computer system or application, such as 

problems, errors, or information on current operations. 

configuration Parameters or settings that may be used by other components or services. 

evidence Information used to substantiate a claim. 

formulation Describes how a component or service was manufactured or deployed. 

attestation Human or machine-readable statements containing facts, evidence, or testimony 

threat-model An enumeration of identified weaknesses, threats, and countermeasures, dataflow 

diagram (DFD), attack tree, and other supporting documentation in human-

readable or machine-readable format 

adversary-model The defined assumptions, goals, and capabilities of an adversary 

risk-assessment Identifies and analyzes the potential of future events that may negatively impact 

individuals, assets, and/or the environment. Risk assessments may also include 

judgments on the tolerability of each risk 

vulnerability-

assertion 

A Vulnerability Disclosure Report (VDR) which asserts the known and previously 

unknown vulnerabilities that affect a component, service, or product including the 

analysis and findings describing the impact (or lack of impact) that the reported 

vulnerability has on a component, service, or product 

exploitability-

statement 

A Vulnerability Exploitability eXchange (VEX) which asserts the known 

vulnerabilities that do not affect a product, product family, or organization, and 

optionally the ones that do. The VEX should include the analysis and findings 

describing the impact (or lack of impact) that the reported vulnerability has on the 

product, product family, or organization 

pentest-report Results from an authorized simulated cyberattack on a component or service, 

otherwise known as a penetration test 
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Reference Type Description 

static-analysis-

report 

SARIF or proprietary machine or human-readable report for which static analysis 

has identified code quality, security, and other potential issues with the source 

code 

dynamic-

analysis-report 

Dynamic analysis report that has identified issues such as vulnerabilities and 

misconfigurations 

runtime-analysis-

report 

Report generated by analyzing the call stack of a running application 

component-

analysis-report 

Report generated by Software Composition Analysis (SCA), container analysis, or 

other forms of component analysis 

maturity-report Report containing a formal assessment of an organization, business unit, or team 

against a maturity model 

certification-

report 

Industry, regulatory, or other certification from an accredited (if applicable) 

certification body 

quality-metrics Report or system in which quality metrics can be obtained 

codified-

infrastructure 

Code or configuration that defines and provisions virtualized infrastructure, 

commonly referred to as Infrastructure as Code (IaC) 

evidence Data collected through various forms of extraction or analysis 

formulation The observed or declared formulas for how components or services were 

manufactured or deployed 

poam Plans of Action and Milestones (POAM) complement an "attestation" external 

reference. POAM is defined by NIST as a "document that identifies tasks needing 

to be accomplished. It details resources required to accomplish the elements of 

the plan, any milestones in meeting the tasks and scheduled completion dates for 

the milestones". 

electronic-

signature 

An e-signature is commonly a scanned representation of a written signature or a 

stylized script of the persons name. 

digital-signature A signature that leverages cryptography, typically public/private key pairs, which 

provides strong authenticity verification. 

rfc-9116 Document that complies with RFC-9116 (A File Format to Aid in Security 

Vulnerability Disclosure) 

other Use this if no other types accurately describe the purpose of the external reference 
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The following are example external references applied to a component: 

"components": [ 
  { 
    "type": "application", 
    "name": "portal-server", 
    "version": "1.0.0", 
    "externalReferences": [ 
      { 
        "type": "advisories", 
        "url": "https://example.org/security/feed/csaf" 
      }, 
      { 
        "type": "bom", 
        "url": "https://example.org/support/sbom/portal-server/1.0.0", 
        "hashes": [ 
          { 
            "alg": "SHA-256", 
            "content": "708f1f53b41f11f02d12a11b1a38d2905d47b099afc71a0f1124ef8582ec7313" 
          } 
        ] 
      }, 
      { 
        "type": "documentation", 
        "url": "https://example.org/support/documentation/portal-server/1.0.0" 
      } 
    ] 
  } 
] 
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Establishing Relationships With BOM-Link 

With CycloneDX, it is possible to reference a component, service, or vulnerability inside a BOM from other 

systems or other BOMs. This deep-linking capability is referred to as BOM-Link and is a formally 

registered URN, governed by IANA, and compliant with RFC-8141. 

Syntax: 

urn:cdx:serialNumber/version#bom-ref 

Examples: 

urn:cdx:f08a6ccd-4dce-4759-bd84-c626675d60a7/1 
urn:cdx:f08a6ccd-4dce-4759-bd84-c626675d60a7/1#componentA 

Field Description 

serialNumber The unique serial number of the BOM. The serial number MUST conform to RFC-4122. 

version The version of the BOM. The default version is 1. 

bom-ref The unique identifier of the component, service, or vulnerability within the BOM. 

There are many use cases that BOM-Link supports. Two common scenarios are: 

• Reference one BOM from another BOM 

• Reference a specific component or service in one BOM from another BOM 

Linking to External BOMs 

As mentioned earlier, external references point to resources outside the object they're associated with 

and may be external to the BOM, or may refer to resources within the BOM. External references can be 

applied to individual components, services, or to the BOM itself. For example, a component could specify 

an external reference pointing to the BOM describing that component. 

"externalReferences": [ 
  { 
    "type": "bom", 
    "url": "urn:cdx:bdd819e6-ee8f-42d7-a4d0-166ff44d51e8/5", 
    "comment": "Refers to version 5 of a specific BOM.", 
    "hashes": [ 
      { 
        "alg": "SHA-256", 
        "content": "c7be1ed902fb8dd4d48997c6452f5d7e509fbcdbe2808b16bcf4edce4c07d14e" 
      } 
    ] 
  } 
] 

There are many common use cases where referencing external BOMs is desirable. One common case 

involves a component in a BOM, where the supplier of the component has published their own BOM 

specific to that component. The BOM for the application may simply list the component and refer to that 

component's externalized BOM for details of the inventory specific to that component. This is especially 

useful for proprietary components where the inventory may not be easily obtainable. 

 

 

 

https://www.iana.org/assignments/urn-formal/cdx
https://www.iana.org/assignments/urn-formal/cdx
https://www.iana.org/
https://www.rfc-editor.org/rfc/rfc8141.html
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The following illustration provides an example of such a scenario. In this case, the supplier of the Acme 

Application includes Components A-F, Component C includes an assembly of D and E, and components 

D, E, and F are included in the BOM for Acme Application. The BOMs for D, E, and F are external and 

provided by other suppliers. The supplier of the Acme Application can leverage the BOMs provided by 

those suppliers by utilizing external references. Consumers should ensure they can resolve and process 

externally referencable BOMs when encountered. 

 

 

 

The following example helps to illustrate what Component F may look like when represented in the BOM 

for Acme Application: 

"components": [ 
  { 
    "bom-ref": "component-f", 
    "type": "library", 
    "name": "Component F", 
    "version": "1.0.0", 
    "externalReferences": [ 
      { 
        "type": "bom", 
        "url": "https://example.com/sbom/component-f-1.0.0.cdx.json", 
        "hashes": [ 
          { 
            "alg": "SHA-256", 
            "content": "708f1f53b41f11f02d12a11b1a38d2905d47b099afc71a0f1124ef8582ec7313" 
          } 
        ] 
      } 
    ] 
  } 
] 

Another common case involves individual BOMs, per layer, in a deployed stack. For example, a BOM 

may contain multiple components, each with external references to its own individual BOMs. A hardware 

component could link to the corresponding Hardware Bill of Material (HBOM), the operating system 

component could link to its corresponding SBOM, and an application component could do the same. 
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A third case involves a service defined in a BOM where the provider of the service has published a 

SaaSBOM containing the individual microservices that make up that consumer-facing service. They may 

also have published a corresponding SBOM defining the individual software components powering 

individual services. 

Linking to Objects Within The Same BOM 

With BOM-Link, relationships can also be established between objects in the same BOM. For example, 

let's establish a relationship where a component defines a threat model. In the example below, acme-

application defines an external reference of type threat-model and uses BOM-Link to reference another 

component in the same BOM. The threat model components scope is excluded, indicating that it's 

omitted from inventory. The acme-threatmodel component in this example is a data component but could 

easily have been a file component. Using a data component allows for the inclusion of the threat model 

itself to be captured in the BOM. This approach may be ideal for audit use cases or for instances where 

access to external systems is prohibited, such as air-gapped environments. 

{ 
  "bomFormat": "CycloneDX", 
  "specVersion": "1.6", 
  "serialNumber": "urn:uuid:3e671687-395b-41f5-a30f-a58921a69b79", 
  "version": 1, 
  "components": [ 
    { 
      "bom-ref": "acme-application", 
      "type": "application", 
      "name": "Acme Application", 
      "version": "1.0.0", 
      "externalReferences": [ 
        { 
          "type": "threat-model", 
          "url": "urn:cdx:3e671687-395b-41f5-a30f-a58921a69b79/1#acme-threatmodel" 
        } 
      ] 
    }, 
    { 
      "bom-ref": "acme-threatmodel", 
      "type": "data", 
      "name": "Acme Threat Model", 
      "scope": "excluded", 
      "data": [ 
        { 
          "type": "other", 
          "contents": { 
            "attachment": { 
              "encoding": "base64", 
              "contentType": "application/pdf", 
              "content": "VGhyZWF0IG1vZGVsIGdvZXMgaGVyZQ==" 
            } 
          } 
        } 
      ] 
    } 
  ] 
} 

Whether the goal is a separation of concerns or increased cost efficiency and quality, the modularity that 

CycloneDX provides is immensely powerful. 
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Linking External VEX to BOM Inventory 

Vulnerability Exploitability eXchange (VEX) is a core capability of CycloneDX that can convey the 

exploitability of vulnerable components in the context of the product in which they're used. VEX 

information may be very dynamic and subject to change, while the product's SBOM will typically remain 

static until such time that the inventory changes. Therefore, it is recommended to decouple the VEX from 

the BOM. This allows VEX information to be updated without having to create and track additional BOMs. 

In the following example, a vulnerability is identified in a component called Jackson Databind, and the 

VEX provides a direct link to the precise component within a BOM. 

"vulnerabilities": [ 
  { 
    "id": "CVE-2018-7489", 
    "source": { 
      "name": "NVD", 
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2019-9997" 
    }, 
    "analysis": { 
      "state": "not_affected", 
      "justification": "code_not_reachable", 
      "response": ["will_not_fix", "update"], 
      "detail": "An optional explanation of why the application is not affected by the vulnerable component." 
    }, 
    "affects": [ 
      { 
        "ref": "urn:cdx:3e671687-395b-41f5-a30f-a58921a69b79/1#jackson-databind-2.8.0" 
      } 
    ] 
  } 
] 
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Pedigree 

CycloneDX can represent component pedigree including ancestors, descendants, and variants which 

describe component lineage from any viewpoint and the commits, patches, and diffs which make it 

unique. The addition of a digital signature applied to a component with detailed pedigree information 

serves as affirmation to the accuracy of the pedigree. 

Pedigree Description 

ancestors Describes zero or more components from which a component is derived. This is 

commonly used to describe forks from existing projects where the forked version 

contains a ancestor node containing the original component it was forked from. 

descendants Descendants are the exact opposite of ancestors. This provides a way to document all 

forks (and their forks) of an original or root component. 

variants Variants describe relations where the relationship between the components are not 

known. For example, if Component A contains nearly identical code to Component B. 

They are both related, but it is unclear if one is derived from the other, or if they share a 

common ancestor. 

The following example illustrates two important aspects of pedigree, namely identity and provenance. 

"components": [ 
{ 
    "type": "library",  
    "group": "com.example", 
    "name": "log4j-core", 
    "version": "2.14.0", 
    "purl": "pkg:maven/com.example/log4j-core@2.14.0?repository_url=registry.example.com", 
    "pedigree": { 
      "ancestors": [ 
        { 
          "type": "library", 
          "group": "org.apache.logging.log4j", 
          "name": "log4j-core", 
          "version": "2.14.0", 
          "purl": "pkg:maven/org.apache.logging.log4j/log4j-core@2.14.0" 
        } 
      ] 
    } 
  } 
] 

The example above illustrates two important aspects of pedigree: 

1) log4j-core from the Apache LOG4J 2™ project was modified. The modified version has an 

identity that is unique from its upstream source. Both the modified and original components are 

represented in the pedigree relationship. 

2) According to the Package URL (purl), the original component was obtained from Maven Central 

(the default for Maven artifacts) while the modified component resides in a repository controlled 

by example.com. The provenance of the artifacts are maintained. 
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The pedigree capabilities in CycloneDX go much further than establishing relationships; the specification 

can also optionally provide transparency into the changes that were made and their purpose. For 

example, the precise commits made to the version control system can be represented. 

"pedigree": { 
  "ancestors": [ ... ], 
  "commits": [ 
    { 
      "uid": "7638417db6d59f3c431d3e1f261cc637155684cd", 
      "url": "https://location/to/7638417db6d59f3c431d3e1f261cc637155684cd", 
      "committer": { 
        "timestamp": "2022-02-13T20:20:39+00:00", 
        "name": "Astra Snyder", 
        "email": "astra.snyder@example.com" 
      }, 
      "message": "Fixes security issue" 
    } 
  ] 
} 

Maintaining accurate pedigree information is especially important with open source components whos 

source code is readily available, modifiable, and redistributable. In the following example, a patch is 

described indicating that the purpose for the modification was to backport a security fix. In addition, the 

diff can be attached or referenced via a URL so that SBOM consumers can independently verify the 

validity and correctness of the patch. 

"pedigree": { 
  "ancestors": [ ... ], 
  "patches": [ 
    { 
      "type": "backport", 
      "diff": { 
        "text": { 
          "contentType": "text/plain", 
          "encoding": "base64", 
          "content": "ZXhhbXBsZSBkaWZmIGhlcmU=" 
        }, 
        "url": "https://example.com/path/to/changes.diff" 
      }, 
      "resolves": [ 
        { 
          "type": "security", 
          "id": "CVE-2021-45105", 
          "source": { 
            "name": "NVD", 
            "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-45105" 
          } 
        } 
      ] 
    } 
  ] 
} 
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Composition Completeness and "Known Unknowns" 

The inventory of components, services, and their relationships to one another can be described through 

the use of compositions. Compositions describe constituent parts (including components, services, and 

dependency relationships) and their completeness. The completeness of vulnerabilities expressed in a 

BOM may also be described. This allows BOM authors to describe how complete the BOM is or if there 

are components in the BOM where completeness is unknown or has been redacted. 

Aggregate Description 

complete The information is complete. No further relationships 

including constituent components, services, or 

dependencies are known to exist. 

incomplete The information is incomplete. 

incomplete_first_party_only The information is incomplete. Only relationships for first-

party components, services, or their dependencies are 

represented. 

incomplete_first_party_proprietary_only The information is incomplete. Only relationships for third-

party components, services, or their dependencies are 

represented, limited specifically to those that are 

proprietary. 

incomplete_first_party_opensource_only The information is incomplete. Only relationships for third-

party components, services, or their dependencies are 

represented, limited specifically to those that are 

opensource. 

incomplete_third_party_only The information is incomplete. Only relationships for third-

party components, services, or their dependencies are 

represented. 

incomplete_third_party_proprietary_only The information is incomplete. Only relationships for third-

party components, services, or their dependencies are 

represented, limited specifically to those that are 

proprietary. 

incomplete_third_party_opensource_only The information is incomplete. Only relationships for third-

party components, services, or their dependencies are 

represented, limited specifically to those that are 

opensource. 

unknown The information may be complete or incomplete. This 

usually signifies a 'best-effort' to obtain constituent 

components, services, or dependencies but the 

completeness is inconclusive. 
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The following illustrates how compositions can be used. In this example, there are three compositions. 

1. In the first object, the component assembly and the dependencies of the application are both 

complete. 

2. In the second object, the completeness of the component assembly is unknown. 

3. In the third object, the component is listed in the BOM, but its information and completeness 

have been redacted. 

"compositions": [ 
  { 
    "aggregate": "complete", 
    "assemblies": [ 
      "pkg:maven/partner/shaded-library@1.0" 
    ], 
    "dependencies": [ 
      "acme-application-1.0" 
    ] 
  }, 
  { 
    "aggregate": "unknown", 
    "assemblies": [ 
      "pkg:maven/acme/library@3.0" 
    ] 
  }, 
  { 
    "aggregate": "redacted", 
    "assemblies": [ 
      "my-redacted-component" 
    ] 
  } 
] 
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Formulation 

CycloneDX can describe declared and observed formulations for reproducibility throughout the product 

lifecycle of components and services. This advanced capability provides transparency into how 

components were made, how a model was trained, or how a service was created or deployed. Generally, 

the formulation is externalized from the SBOM into a dedicated Manufacturing Bill of Materials (MBOM). 

The SBOM references the MBOM that describes the environment, configuration, tools, and all other 

considerations necessary to replicate a build with utmost precision. This capability allows other parties to 

independently verify inputs and outputs from a build which can increase the software's assurance. 

Formulation establishes relationships with components and services, each of which can be referenced in 

a given formula through a series of workflows, tasks, and steps. As of this writing, the "Authoritative Guide 

to MBOM" is being drafted. When complete, it will serve as a reference for effectively using formulation for 

a wide variety of use cases. 

The following example illustrates an SBOM where a component referenced the corresponding MBOM 

describing how the component was made. Independent access controls can be established by 

separating the SBOM inventory from potentially highly-sensitive MBOM data. For example, this allows 

organizations to provide SBOMs to a broader audience while keeping stricter control over who has 

access to the MBOM. 

"externalReferences": [ 
  { 
    "type": "formulation", 
    "url": "https://example.com/mboms/acme-library-1.0.cdx.json", 
    "hashes": [ 
      { 
        "alg": "SHA-256", 
        "content": "c7be1ed902fb8dd4d48997c6452f5d7e509fbcdbe2808b16bcf4edce4c07d14e" 
      } 
    ] 
  } 
] 
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Evidence 

As we've seen, a BOM is crucial for understanding the composition of the software and its associated 

risks. CycloneDX BOMs may include evidence substantiating the declared identity of components within 

the BOM. Additionally, the specification includes other observations about the component inventory such 

as multiple occurrences, call stack reachability, and evidence of licenses and copyrights. 

Component Identity 

CycloneDX includes evidence substantiating the declared identity of components within the BOM. This is 

vital for communicating the quality and general trustworthiness of the BOMs' contents. Evidence helps 

establish the accuracy of the BOM by validating that the declared components match the actual software 

components used. 

Component identity evidence is made up of the following elements: 

 

Field 

The identity field of the component which the evidence describes. 

Field Description 

group The grouping name or identifier. This is often a shortened, single name of the company or 

project that produced the component, or its associated domain name. 

name The name of the component. This will often be a shortened, single name of the 

component. 

version The component version 

purl The Package URL (purl) specification 

cpe The Common Platform Enumeration (CPE) conforming to the CPE 2.2 or 2.3 specification 

omniborId The OmniBOR Artifact ID (gitoid) 

swhid The Software Heritage persistent identifier 

swid ISO-IEC 19770-2: Software Identification (SWID) Tags 

hash The cryptographic hash of the component 
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Confidence 

Confidence is supported per-technique along with a cumulative of all methods used. The confidence is 

specified as a decimal, from 0 to 1, where 1 is 100% confidence. 

Concluded Value 

The value of the field (cpe, purl, etc) that has been concluded based on the aggregate of all methods (if 

available). 

Methods 

Multiple methods may be specified. Each method includes the specific technique used, the confidence of 

each technique, and the value of the evidence that the technique revealed. 

Techniques 

The technique used in this method of analysis. 

Technique Description 

source-code-

analysis 

Examines the source code without executing it 

binary-analysis Examines a compiled binary through reverse engineering, typically via 

disassembly or bytecode reversal 

manifest-analysis Examines a package management system such as those used for building 

software or installing software 

ast-fingerprint Examines the Abstract Syntax Tree (AST) of source code or a compiled binary 

hash-comparison Evaluates the cryptographic hash of a component against a set of pre-computed 

hashes of identified software 

instrumentation Examines the call stack of running applications by intercepting and monitoring 

application logic without the need to modify the application 

dynamic-analysis Evaluates a running application 

filename Evaluates file name of a component against a set of known file names of identified 

software 

attestation A testimony to the accuracy of the identify of a component made by an individual 

or entity 

other Any other technique 

 

Tools 

The tools (components or services) which extracted the evidence, performed the analysis, or evaluated 

the results. 
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Example #1 

The following example illustrates how different methods can be combined to substantiate a component's 

identity. 

"components": [ 
  { 
    "group": "com.google.code.findbugs", 
    "name": "findbugs-project", 
    "version": "3.0.0", 
    "purl": "pkg:maven/com.google.code.findbugs/findbugs-project@3.0.0", 
    "evidence": { 
      "identity": [ 
        { 
          "field": "purl", 
          "confidence": 1, 
          "concludedValue": "pkg:maven/com.google.code.findbugs/findbugs-project@3.0.0", 
          "methods": [ 
            { 
              "technique": "filename", 
              "confidence": 0.1, 
              "value": "findbugs-project-3.0.0.jar" 
            }, 
            { 
              "technique": "hash-comparison", 
              "confidence": 0.8, 
              "value": "7c547a9d67cc7bc315c93b6e2ff8e4b6b41ae5be454ac249655ecb5ca2a85abf" 
            } 
          ] 
        } 
      ] 
    }       
  } 
] 

Example #2 

In the following example, two identity objects provide lower-confidence alternate CPEs. Vulnerability 

databases such as the National Vulnerability Database, which rely exclusively on CPE, often have 

erroneous or data fidelity issues that prevent precise reporting on affected products. CycloneDX solves 

this issue by allowing BOM authors to assert component identity, and optionally specify evidence of other 

possible identifiers to aid in vulnerability identification. 

"evidence": { 
  "identity": [ 
    { 
      "field": "cpe", 
      "confidence": 0.4, 
      "concludedValue": "cpe:2.3:a:acme:acme-application:1.0.0:*:*:*:*:*:*:*" 
    }, 
    { 
      "field": "cpe", 
      "confidence": 0.4, 
      "concludedValue": "cpe:2.3:a:acme-systems:acme-application:1.0.0:*:*:*:*:*:*:*" 
    }         
  ] 
} 
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Technique Confidence Recommendations 

The following are recommendations for tool creators and BOM consumers. Each technique is a general 

category. Tools may employ general purpose or highly specialized rules and analysis, each with varying 

degrees of confidence. 

Technique Confidence Guidance 

source-code-

analysis 

0.3 - 1.0 Confidence will vary based on rules, type of analyzers used, or 1:1 

matching of source with a known good dataset. 

binary-analysis 0.2 - 0.7 The individual rules, analyzers, and dataset coverage will influence 

confidence. 

manifest-analysis 0.4 - 0.6 Manifests have known limitations and abuse cases and have 

moderate confidence. 

ast-fingerprint 0.3 - 1.0 Wide range of possible confidence due to source and binary 

variations, but it has the potential for precise results. 

hash-comparison 0.7 - 1.0 Can successfully match components given a large dataset. 

Confidence may vary based on the cryptographic hash function 

used and its resistance to collisions. 

instrumentation 0.3 - 0.8 Confidence similar to source-code-analysis with the added benefit of 

supporting call-stack evidence 

dynamic-analysis 0.2 - 0.6 Low to moderate confidence due to the "black box" approach of 

many tools. 

filename 0 - 0.1 Filename matching is low-confidence 

attestation 0.7 - 1.0 The testimony of a supplier or trusted third-party, especially when 

legally binding, may have high confidence. 
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Occurrences 

CycloneDX provides a mechanism to describe identical components spread across multiple locations. For 

example, a component may be used by a command-line tool and included as part of a user interface. As 

such, the component may be installed in multiple locations on the filesystem. CycloneDX provides a way 

to represent this using evidence. 

"components": [ 
  { 
    "type": "library", 
    "name": "acme-persistence", 
    "version": "1.0.0", 
    "evidence": { 
      "occurrences": [ 
        { 
          "bom-ref": "d6bf237e-4e11-4713-9f62-56d18d5e2079", 
          "location": "/path/to/component" 
        }, 
        { 
          "bom-ref": "b574d5d1-e3cf-4dcd-9ba5-f3507eb1b175", 
          "location": "/another/path/to/component" 
        } 
      ] 
    } 
  } 
] 

Reachability Using Call Stacks 

Evidence of the components use through the call stack can be described using CycloneDX. This helps 

organizations understand the reachability and potential impact of a specific software component. By 

tracing the call stack, which describes how different components interact with each other, BOM 

producers and consumers have an elevated level of confidence that a component or vulnerable function 

within a component is invoked or not. 

"callstack": { 
  "frames": [ 
    { 
      "package": "com.apache.logging.log4j.core", 
      "module": "Logger.class", 
      "function": "logMessage", 
      "parameters": [ 
        "com.acme.HelloWorld", "Level.INFO", "null", "Hello World" 
      ], 
      "line": 150, 
      "column": 17, 
      "fullFilename": "/path/to/log4j-core-2.14.0.jar!/org/apache/logging/log4j/core/Logger.class" 
    }, 
    { 
      "module": "HelloWorld.class", 
      "function": "main", 
      "line": 20, 
      "column": 12, 
      "fullFilename": "/path/to/HelloWorld.class" 
    } 
  ] 
} 
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License and Copyright 

CycloneDX incorporates SPDX license IDs and expressions to document stated licenses of open-source 

components and individual source files. Observed licenses and copyright statements are also fully 

supported in the form of evidence. In OpenChain terms, a CycloneDX BOM is classified as a compliance 

artifact. 

Organizations seeking OpenChain conformance should review the specification and ensure all verification 

requirements are met, including fully documented processes for how the CycloneDX BOMs were created, 

distributed, and archived. The CycloneDX BOM Repository Server is a simple and effective way to 

automate the publishing, versioning, and archiving of BOMs. 

"evidence": { 
  "licenses": [ 
    { 
      "license": { 
        "id": "Apache-2.0", 
        "url": "http://www.apache.org/licenses/LICENSE-2.0" 
      } 
    }, 
    { 
      "license": { 
        "id": "LGPL-2.1-only", 
        "url": "https://opensource.org/licenses/LGPL-2.1" 
      } 
    } 
  ], 
  "copyright": [ 
    { "text": "Copyright 2012 Amce Inc. All Rights Reserved." }, 
    { "text": "Copyright (C) 2004,2005 Example Co" } 
  ] 
} 

  

 

 

 

https://github.com/CycloneDX/cyclonedx-bom-repo-server
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Scenarios and Recommendations 

The following recommendations are for common scenarios that are frequently cited or inquired about by 

the CycloneDX community. 

General Guidance 

• The SBOM should have a single bom.metadata.component without subcomponents 

• The SBOM should describe the software components and external services the application 

depends on in bom.components and bom.services, respectively 

• The SBOM should include as much information about the components and services as possible 

• The SBOM should describe the dependencies between software components and any services 

• The SBOM should describe the lifecycles involved in the creation of the SBOM 

• The SBOM should provide evidence of component identity, the methods and techniques used, 

and their associated confidence 

• The SBOM should provide evidence of observed licenses and copyright statements 

Microservice 

• Each microservice should have an independent SBOM 

• Optionally, a SaaSBOM can be leveraged to describe the inventory of all services that make up 

an application 

– Each service in the SaaSBOM can then reference the SBOM specific to that service 

Single Application (monolith, mobile app, etc) 

• Optionally, the runtime environment and configuration of the application may also be specified 

Multi-Product Solution 

• The SBOM should have a single bom.metadata.component and leverage subcomponents 

• The "solution" is the bom.metadata.component. For each product included, ensure each is listed 

as a subcomponent of bom.metadata.component 

Multi-Module Product 

• The SBOM should have a single bom.metadata.component without subcomponents 

• Each module should be its own component, specified under bom.components. Each module may 

then either: 

– Include subcomponents, thus creating a hierarchy, or 

– Use external references to link to each modules independent SBOM 
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Using Modified Open Source Software 

• Include component pedigree for each modified open source component 

SBOM as Resource Locator 

• Use of external references transforms CycloneDX into a "table of contents" for all relevant 

information about a product or any component included in a product. 

• Possibilities include referencing threat models, maturity models, and quality metrics 

SBOM in Release Management 

• For products defined in bom.metadata.component, include machine-readable release notes 

• Create a publishing process for CycloneDX release notes which transforms them into PDF, 

Markdown, HTML, or plain text 

• Leverage custom lifecycles and properties for release management and governance 

• Sign SBOMs prior to distribution 
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Extensibility 

Multiple extension points exist throughout the CycloneDX object model, allowing fast prototyping of new 

capabilities and support for specialized and future use cases. The CycloneDX project maintains 

extensions that are beneficial to the larger community. The project encourages community participation 

and the development of extensions that target specialized or industry-specific use cases. 

There are three primary means of extending CycloneDX. 

• CycloneDX properties 

• CycloneDX properties using registered namespace 

• XML extensions 

Note on hardened schemas: The XML and JSON schemas are hardened by design. This prevents 

unexpected markup, object types, and values from being present in the SBOMs that have not been pre-

defined in the schemas. Hardened schemas are required for many high-assurance use cases. The 

security protections inherent in hardened schemas benefit the entire CycloneDX community. While these 

protections are highly beneficial, they do restrict serialization formats that are not extensible by design, 

most notably JSON. 

CycloneDX Properties 

The CycloneDX standard is fully extensible, allowing for complex data to be represented in the BOM that 

is not provided by the core specification. In many cases, name-value pairs are a simple option. 

CycloneDX supports Properties which is a name-value store that can be used to describe additional data 

about the components, services, or the BOM that isn't native to the core specification. Unlike key-value 

stores, properties support duplicate names, each potentially having different values. CycloneDX 

properties are a core part of the specification and are supported in all serialization formats, including 

XML, JSON, and protocol buffers. 

JSON Example 

"properties": [ 
  { 
    "name": "Foo", 
    "value": "Bar" 
  } 
] 

XML Example 

<properties> 
    <property name="Foo">Bar</property> 
</properties> 

CycloneDX Properties and Registered Namespaces 

The CycloneDX standard does not impose restrictions on the property names used. However, 

standardization can assist tool implementers and BOM consumers. CycloneDX achieves this through 

formally registered namespaces. These namespaces prefix the property name and are defined by the 

organization or project that registered the namespace. 

Namespaces are hierarchical and delimited with a : and may optionally start with urn:. Examples include: 
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cdx:gomod:binary 
cdx:npm:package:bundled 
cdx:pipenv:package 

Organizations and open source projects can register a dedicated namespace at the CycloneDX Property 

Taxonomy repository on GitHub. https://github.com/CycloneDX/cyclonedx-property-taxonomy 

XML Extensions 

XML is extensible by design. CycloneDX is a hardened schema, but it does allow for additional XML 

elements so long as they reside in a different namespace. This extensibility allows for representing more 

complex data structures in CycloneDX that would not otherwise be supported. One such extension 

commonly used is XML Signature, used for enveloped signing. 

<bom xmlns="http://cyclonedx.org/schema/bom/1.6" 
     serialNumber="urn:uuid:3e671687-395b-41f5-a30f-a58921a69b79" 
     version="1"> 
    <components> 
        ... 
    </components> 
    <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 
        <ds:SignedInfo> 
            <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/> 
            <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 
            <ds:Reference URI=""> 
                <ds:Transforms> 
                    <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/> 
                </ds:Transforms> 
                <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 
                <ds:DigestValue>sZjV4XcMOuD6NA9bXEd2sGWQYE0=</ds:DigestValue> 
            </ds:Reference> 
        </ds:SignedInfo> 
        <ds:SignatureValue>...</ds:SignatureValue> 
        <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 
            <ds:X509Data> 
                <ds:X509SubjectName>CN=bomsigner,OU=development,O=cyclonedx</ds:X509SubjectName> 
                <ds:X509Certificate>...</ds:X509Certificate> 
            </ds:X509Data> 
            <ds:KeyValue> 
                <ds:RSAKeyValue> 
                    <ds:Modulus>...</ds:Modulus> 
                    <ds:Exponent>AQAB</ds:Exponent> 
                </ds:RSAKeyValue> 
            </ds:KeyValue> 
        </ds:KeyInfo> 
    </ds:Signature> 
</bom> 

  

 

 

 

https://github.com/CycloneDX/cyclonedx-property-taxonomy
https://github.com/CycloneDX/cyclonedx-property-taxonomy
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Appendix A: Glossary 

• Chain of custody - Auditable documentation of point of origin as well as the method of transfer 

from point of origin to point of destination and the identity of the transfer agent. 

• Component function - The purpose for which a software component exists. Examples of 

component functions include parsers, database persistence, and authentication providers. 

• Component type - The general classification of a software components architecture. Examples of 

component types include libraries, frameworks, applications, containers, and operating systems. 

• Direct dependency - A software component that is referenced by a program itself. 

• Package manager - A distribution mechanism that makes software artifacts discoverable by 

requesters. 

• Package URL (PURL) - An ecosystem-agnostic specification which standardizes the syntax and 

location information of software components. 

• Pedigree - Data which describes the lineage and/or process for which software has been created 

or altered. 

• Point of origin - The supplier and associated metadata from which a software component has 

been procured, transmitted, or received. Package repositories, release distribution platforms, 

and version control history are examples of various points of origin. 

• Procurement – The process of agreeing to terms and acquiring software or services for later use. 

• Provenance - The chain of custody and origin of a software component. Provenance 

incorporates the point of origin through distribution as well as derivatives in the case of software 

that has been modified. 

• Software Identification (SWID) - An ISO standard that formalizes how software is tagged. 

• Software Package Data Exchange (SPDX) - A Linux Foundation project which produces a 

software bill of materials specification and a standardized list of open source licenses. 

• Third-party component – Any software component not directly created including open source, 

"source available", and commercial or proprietary software. 

• Transitive dependency - A software component that is indirectly used by a program by means of 

being a dependency of a dependency. 
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Appendix B: References 

The following resources may be useful to users and adopters of this standard: 

• NTIA Multistakeholder Process on Software Component Transparency, Framing Working Group. 

(21 October 2021). Framing Software Component Transparency: Establishing a Common 

Software Bill of Materials (SBOM), Second Edition. 

https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf 

• NTIA. (12 July 2021). The Minimum Elements for Software Bill of Materials. 

https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf 

• The White House. (12 May 2021). Executive Order on Improving the Nation’s Cybersecurity. 

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-

improving-the-nations-cybersecurity/ 

• SPDX License IDs 

• SPDX License List 

• OpenChain 

• OWASP CycloneDX 

• OWASP CycloneDX Tool Center 

• OWASP CycloneDX BOM Repository Server 

• OWASP Dependency-Track 

• OWASP Software Component Verification Standard (SCVS) 

• OWASP Software Component Verification Standard (SCVS) BOM Maturity Model 
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