
Implement and optimize use of
Software Bill of Materials

Guide to SBOM
Authoritative

Table of Contents

About the Guide ...4
Copyright and License ...4

PREFACE ... 5

THE INNOVATIVE HISTORY OF OWASP CYCLONEDX ... 6

INTRODUCTION ... 7

Design Philosophy and Guiding Principles ..7
Defining Software Bill of Materials ..7
The Role of SBOM in Software Transparency ...7
High-Level SBOM Use Cases ..8
xBOM Capabilities ...8

CYCLONEDX OBJECT MODEL .. 11

BOM Identity ..12
The Anatomy of a CycloneDX BOM ...12
Serialization Formats ..14

LIFECYCLE PHASES ... 15

USE CASES .. 17

Inventory ..19
Vulnerability Management ..21
Enterprise Configuration Management Database (CMDB) ...21
Integrity Verification ..21
Authenticity ..23
License Compliance ...23
Outdated Component Analysis...23
Provenance ..24
Pedigree ..24
Foreign Ownership, Control, or Influence (FOCI)..24
Export Compliance ...25
Procurement ..25
Vendor Risk Management ..25
Supply Chain Management ..25
Composition Completeness and "Known Unknowns" ..26
Formulation Assurance and Verification ...26
Cryptography Asset Management ..26
Identifying Weak Cryptographic Algorithms ..26
Post-Quantum Cryptography (PQC) Readiness ...26
Assess Cryptographic Policies and Advisories ...27
Identify Expiring and Long-Term Cryptographic Material ..27
Ensure Cryptographic Certifications ...27

BOM COVERAGE, MATURITY, AND QUALITY ... 28

NTIA Minimum Elements ..28
SCVS BOM Maturity Model ..29
SBOM Quality ..30

 2

GENERATING CYCLONEDX BOMS .. 32

Approaches to Generating CycloneDX SBOMs..33
Generating SBOMs for Source Files ...34
Integrating CycloneDX Into The Build Process ...34
Generating BOMs at Runtime ..35
Generating BOMs From Evidence (from binaries) ..35
Building CycloneDX BOMs Manually ..35

CONSUMING CYCLONEDX BOMS... 36

LEVERAGING DATA COMPONENTS .. 37

INTRODUCTION TO CRYPTOGRAPHIC COMPONENTS .. 39

LICENSE COMPLIANCE .. 41

Open Source Licensing ..41
Declared and Concluded Licenses ...41
Using Evidence To Substantiate Concluded Licenses and Track Copyrights42
Commercial Licensing ..42
Security and Quality Considerations for Tracking Commercial Licenses.....................................44

ESTABLISHING RELATIONSHIPS IN CYCLONEDX ... 45

Component Assemblies ...45
Service Assemblies ..46
Dependencies ..46
External References ...49
Establishing Relationships With BOM-Link..53
Pedigree ..57
Composition Completeness and "Known Unknowns" ..59
Formulation ..61

EVIDENCE .. 62

Component Identity ..62
Occurrences ..66
Reachability Using Call Stacks ...66
License and Copyright ...67

SCENARIOS AND RECOMMENDATIONS .. 68

General Guidance ..68
Microservice ..68
Single Application (monolith, mobile app, etc) ..68
Multi-Product Solution ..68
Multi-Module Product ...68
Using Modified Open Source Software ...69
SBOM as Resource Locator ...69
SBOM in Release Management ...69

EXTENSIBILITY ... 70

CycloneDX Properties ..70
CycloneDX Properties and Registered Namespaces ..70

 3

XML Extensions ...71

APPENDIX A: GLOSSARY .. 72

APPENDIX B: REFERENCES ... 73

 4

About the Guide

CycloneDX is a modern standard for the software supply chain.

The content in this guide results from continuous community feedback and input from leading experts in

the software supply chain security field. This guide would not be possible without valuable feedback from

the CycloneDX Industry Working Group (IWG), the CycloneDX Core Working Group (CWG), the many

CycloneDX Feature Working Groups (FWG), Ecma International Technical Committee 54, and a global

network of contributors and supporters.

Copyright and License

Copyright © 2024 The OWASP Foundation.

This document is released under the Creative Commons Attribution 4.0 International. For any reuse or

distribution, you must make clear to others the license terms of this work.

Second Edition, 09 April 2024

Version Changes Updated On Updated By

Second Edition Updated for CycloneDX v1.6 2024-04-09 CycloneDX Core Working Group

First Edition Initial Release 2023-06-25 CycloneDX Core Working Group

https://creativecommons.org/licenses/by/4.0/

 5

Preface

Welcome to the Authoritative Guide series by the OWASP Foundation and OWASP CycloneDX. In this

series, we aim to provide comprehensive insights and practical guidance, ensuring that security

professionals, developers, and organizations alike have access to the latest best practices and

methodologies.

At the heart of the OWASP Foundation lies a commitment to inclusivity and openness. We firmly believe

that everyone deserves a seat at the table when it comes to shaping the future of cybersecurity

standards. Our collaborative model fosters an environment where diverse perspectives converge to drive

innovation and excellence.

In line with this ethos, the OWASP Foundation has partnered with Ecma International to create an

inclusive, community-driven ecosystem for security standards development. This collaboration empowers

individuals to contribute their expertise and insights, ensuring that standards like CycloneDX reflect the

collective wisdom of the global cybersecurity community.

One standout example of this model is OWASP CycloneDX, which is on track to becoming an Ecma

International standard through Technical Committee 54 (TC54). By leveraging the strengths of both

organizations, CycloneDX is poised to become a cornerstone of security best practices, providing

organizations with a universal standard for software and system transparency.

As you embark on your journey through this Authoritative Guide, we encourage you to engage actively

with the content and join us in shaping the future of cybersecurity standards. Together, we can build a

safer and more resilient digital world for all.

Andrew van der Stock

Executive Director, OWASP Foundation

 6

The Innovative History of OWASP CycloneDX

OWASP CycloneDX has carved a legacy steeped in innovation, collaboration, and a commitment to

openness. OWASP continues to advance software and system transparency standards, prioritizing

capabilities that facilitate risk reduction.

Source: https://tc54.org/history

https://tc54.org/history
https://tc54.org/history

 7

Introduction

CycloneDX is a modern standard for the software supply chain. At its core, CycloneDX is a general-

purpose Bill of Materials (BOM) standard capable of representing software, hardware, services, and other

types of inventory. CycloneDX is an OWASP flagship project, has a formal standardization process and

governance model through Ecma Technical Committee 54, and is supported by the global information

security community.

Design Philosophy and Guiding Principles

The simplicity of design is at the forefront of the CycloneDX philosophy. The format is easily

understandable by a wide range of technical and non-technical roles. CycloneDX is a full-stack BOM

format with many advanced capabilities that are achieved without sacrificing the design philosophy. Some

guiding principles influencing its design include:

• Be easy to adopt and easy to contribute to

• Identify risk to as many adopters as possible, as quickly as possible

• Avoid blockers that prevent the identification of risk

• Continuous improvement - innovate quickly and improve over time

• Encourage innovation and competition through extensions

• Produce immutable and backward-compatible releases

• Focus on high degrees of automation

• Provide a smooth path to specification compliance through prescriptive design

Defining Software Bill of Materials

The U.S. National Telecommunications and Information Administration (NTIA) defines software bill as

materials as "a formal, machine-readable inventory of software components and dependencies,

information about those components, and their hierarchical relationships." OWASP CycloneDX

implements this definition and extends it in many ways, including adding services as a foundational

component in a Software Bill of Materials.

The Role of SBOM in Software Transparency

Software transparency involves providing clear and accurate information about the components used in

an application, including their name, version, supplier, and any dependencies required by the component.

This information helps identify and manage the risks associated with the software whilst also enabling

compliance with relevant regulations and standards. With the growing importance of software in our daily

lives, transparency is critical to building trust in software and ensuring that it is safe, secure, and reliable.

SBOMs are the vehicle through which software transparency can be achieved. With SBOMs, parties

throughout the software supply chain can leverage the information within to enable various use cases that

would not otherwise be easily achievable. SBOMs play a vital role in promoting software transparency,

allowing users to make informed decisions about the software they use.

https://tc54.org/

 8

High-Level SBOM Use Cases

A complete and accurate inventory of all first-party and third-party components is essential for risk

identification. SBOMs should ideally contain all direct and transitive components and the dependency

relationships between them.

CycloneDX far exceeds the Minimum Elements for Software Bill of Materials as defined by the National

Telecommunications and Information Administration (NTIA) in response to U.S. Executive Order 14028.

Adopting CycloneDX allows organizations to quickly meet these minimum requirements and mature into

using more sophisticated use cases over time. CycloneDX is capable of achieving all SBOM requirements

defined in the OWASP Software Component Verification Standard (SCVS).

A few high-level use cases for SBOM include:

• Product security, architectural, and license risk

• Procurement and M&A

• Software component transparency

• Supply chain transparency

• Vendor risk management

xBOM Capabilities

CycloneDX provides advanced supply chain capabilities for cyber risk reduction. Among these

capabilities are:

• Software Bill of Materials (SBOM)

• Software-as-a-Service Bill of Materials (SaaSBOM)

• Hardware Bill of Materials (HBOM)

• Machine Learning Bill of Materials (ML-BOM)

• Cryptography Bill of Materials (CBOM)

• Operations Bill of Materials (OBOM)

• Manufacturing Bill of Materials (MBOM)

• Bill of Vulnerabilities (BOV)

• Vulnerability Disclosure Report (VDR)

• Vulnerability Exploitability eXchange (VEX)

• CycloneDX Attestations (CDXA)

• Common Release Notes Format

https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.gov/
https://www.ntia.gov/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://owasp.org/scvs

 9

Software Bill of Materials (SBOM)

SBOMs describe the inventory of software components and services and the dependency relationships

between them. A complete and accurate inventory of all first-party and third-party components is

essential for risk identification. SBOMs should ideally contain all direct and transitive components and the

dependency relationships between them.

Software-as-a-Service BOM (SaaSBOM)

SaaSBOMs provide an inventory of services, endpoints, and data flows and classifications that power

cloud-native applications. CycloneDX is capable of describing any type of service, including

microservices, Service Orientated Architecture (SOA), Function as a Service (FaaS), and System of

Systems.

SaaSBOMs complement Infrastructure-as-Code (IaC) by providing a logical representation of a complex

system, complete with an inventory of all services, their reliance on other services, endpoint URLs, data

classifications, and the directional flow of data between services. Optionally, SaaSBOMs may also include

the software components that make up each service.

Hardware Bill of Materials (HBOM)

CycloneDX supports many types of components, including hardware devices, making it ideal for use with

consumer electronics, IoT, ICS, and other types of embedded devices. CycloneDX fills an important role

in between traditional eBOM and mBOM use cases for hardware devices.

Machine Learning Bill of Materials (ML-BOM)

ML-BOMs provide transparency for machine learning models and datasets, which provide visibility into

possible security, privacy, safety, and ethical considerations. CycloneDX standardizes model cards in a

way where the inventory of models and datasets can be used independently or combined with the

inventory of software and hardware components or services defined in HBOMs, SBOMs, and

SaaSBOMs.

Cryptography Bill of Materials (CBOM)

A Cryptography Bill of Materials (CBOM) describes cryptographic assets and their dependencies.

Discovering, managing, and reporting on cryptographic assets is necessary as the first step on the

migration journey to quantum-safe systems and applications. Cryptography is typically buried deep within

components used to compose and build systems and applications. As part of an agile cryptographic

approach, organizations should seek to understand what cryptographic assets they are using and

facilitate the assessment of the risk posture to provide a starting point for mitigation.

Operations Bill of Materials (OBOM)

OBOMs provide a full-stack inventory of runtime environments, configurations, and additional

dependencies. CycloneDX is a full-stack bill of materials standard supporting entire runtime environments

consisting of hardware, firmware, containers, operating systems, applications, and libraries. Coupled with

the ability to specify configuration makes CycloneDX ideal for Operations Bill of Materials.

Manufacturing Bill of Materials (MBOM)

CycloneDX can describe declared and observed formulations for reproducibility throughout the product

lifecycle of components and services. This advanced capability provides transparency into how

components were made, how a model was trained, or how a service was created or deployed. In

addition, every component and service in a CycloneDX BOM can optionally specify formulation and do so

in existing BOMs or in dedicated MBOMs. By externalizing formulation into dedicated MBOMs, SBOMs

can link to MBOMs for their components and services, and access control can be managed

independently. This allows organizations to maintain tighter control over what parties gain access to

 10

inventory information in a BOM and what parties have access to MBOM information which may have

higher sensitivity and data classification.

Bill of Vulnerabilities (BOV)

CycloneDX BOMs may consist solely of vulnerabilities and thus can be used to share vulnerability data

between systems and sources of vulnerability intelligence. Complex vulnerability data can be

represented, including the vulnerability source, references, multiple severities, risk ratings, details and

recommendations, and the affected software and hardware, along with their versions.

Vulnerability Disclosure Report (VDR)

VDRs communicate known and unknown vulnerabilities affecting components and services. Known

vulnerabilities inherited from the use of third-party and open-source software can be communicated with

CycloneDX. Previously unknown vulnerabilities affecting both components and services may also be

disclosed using CycloneDX, making it ideal for Vulnerability Disclosure Report (VDR) use cases.

CycloneDX exceeds the data field requirements defined in ISO/IEC 29147:2018 for vulnerability

disclosure information.

Vulnerability Exploitability eXchange (VEX)

VEX conveys the exploitability of vulnerable components in the context of the product in which they're

used. VEX is a subset of VDR. Oftentimes, products are not affected by a vulnerability simply by including

an otherwise vulnerable component. VEX allows software vendors and other parties to communicate the

exploitability status of vulnerabilities, providing clarity on the vulnerabilities that pose a risk and the ones

that do not.

CycloneDX Attestations (CDXA)

CycloneDX Attestations enable organizations to communicate security standards, claims, and evidence

about security requirements, and attestations to the veracity and completeness of those claims.

CycloneDX Attestations is a way to manage "compliance as code."

Common Release Notes Format

CycloneDX standardizes release notes into a common, machine-readable format. This capability unlocks

new workflow potential for software publishers and consumers alike. This functionality works with or

without the Bill of Materials capabilities of the specification.

https://www.iso.org/standard/72311.html

 11

CycloneDX Object Model

The CycloneDX object model is defined in JSON Schema, XML Schema, and Protocol Buffers and

consists of metadata, components, services, dependencies, compositions, vulnerabilities, formulation,

and annotations. CycloneDX is prescriptive, can easily describe complex relationships, and is extensible

to support specialized and future use cases.

Within the root bom element, CycloneDX defines the following object types:

The object types are arranged in order and contain (but are not limited to) the following types of data:

 12

BOM Identity

The bom element has properties for serialNumber and version. Together these two properties form the

identity of a BOM. A BOM's identity can be expressed using a BOM-Link, a formally registered URN

capable of referencing a BOM or any component, service, or vulnerability in a BOM. Refer to the chapter

on Relationships for more information.

Serial Number

Every BOM generated should have a unique serial number, even if the contents of the BOM have not

changed over time. If specified, the serial number must conform to RFC-4122. The use of serial numbers

is recommended.

Version

Whenever an existing BOM is modified, either manually or through automated processes, the version of

the BOM should be incremented by 1. When a system is presented with multiple BOMs with identical

serial numbers, the system should use the most recent version of the BOM. The default version is '1'.

The Anatomy of a CycloneDX BOM

The following are descriptions of the root-level elements of a CycloneDX BOM.

Metadata

BOM metadata includes the supplier, manufacturer, and target component for which the BOM describes.

It also includes the tools used to create the BOM, and license information for the BOM document itself.

Components

Components describe the complete inventory of first-party and third-party components. The specification

can represent software, hardware devices, machine learning models, source code, and configurations,

along with the manufacturer information, license and copyright details, and complete pedigree and

provenance for every component.

Services

Services represent external APIs that the software may call. They describe endpoint URIs, authentication

requirements, and trust boundary traversals. The data flow between software and services can also be

described, including the data classifications and the flow direction of each type.

Dependencies

CycloneDX provides the ability to describe components and their dependency on other components. The

dependency graph is capable of representing both direct and transitive relationships. Components that

 13

depend on services can be represented in the dependency graph, and services that depend on other

services can be represented as well.

Compositions

Compositions describe constituent parts (including components, services, and dependency relationships)

and their completeness. The aggregate of each composition can be described as complete, incomplete,

incomplete first-party only, incomplete third-party only, or unknown.

Vulnerabilities

Known vulnerabilities inherited from the use of third-party and open-source software and the exploitability

of the vulnerabilities can be communicated with CycloneDX. Previously unknown vulnerabilities affecting

both components and services may also be disclosed using CycloneDX, making it ideal for both

vulnerability disclosure and VEX use cases.

Formulation

Formulation describes how something was manufactured or deployed. CycloneDX achieves this through

the support of multiple formulas, workflows, tasks, and steps, which represent the declared formulation

for reproduction along with the observed formula describing the actions which transpired in the

manufacturing process.

Annotations

Annotations contain comments, notes, explanations, or similar textual content which provide additional

context to the object(s) being annotated. They are often automatically added to a BOM via a tool or as a

result of manual review by individuals or organizations. Annotations can be independently signed and

verified using digital signatures.

Definitions

Standards, requirements, levels, and all supporting documentation are defined here. CycloneDX provides

a general-purpose, machine-readable way to define virtually any type of standard. Security standards

such as OWASP ASVS, MASVS, SCVS, and SAMM are available in CycloneDX format. Standards from

other bodies are available as well. Additionally, organizations can create internal standards and represent

them in CycloneDX.

 14

Declarations

Declarations describe the conformance to standards. Each declaration may include attestations, claims,

counter-claims, evidence, counter-evidence, along with conformance and confidence. Signatories can

also be declared and supports both digital and analog signatures. Declarations provide the basis for

"compliance-as-code".

Extensions

Multiple extension points exist throughout the CycloneDX object model, allowing fast prototyping of new

capabilities and support for specialized and future use cases. The CycloneDX project maintains

extensions that are beneficial to the larger community. The project encourages community participation

and the development of extensions that target specialized or industry-specific use cases.

Serialization Formats

CycloneDX can be represented in JSON, XML, and Protocol Buffers (protobuf) and has corresponding

schemas for each.

Format Resource URL

JSON Documentation https://cyclonedx.org/docs/latest/json/

JSON Schema https://cyclonedx.org/schema/bom-1.6.schema.json

XML Documentation https://cyclonedx.org/docs/latest/xml/

XML Schema https://cyclonedx.org/schema/bom-1.6.xsd

Protobuf Schema https://cyclonedx.org/schema/bom-1.6.proto

CycloneDX relies exclusively on JSON Schema, XML Schema, and protobuf for validation. The entirety of

the specification can be validated using officially supported CycloneDX tools or via hundreds of available

validators that support JSON Schema, XML Schema, or protobuf.

https://cyclonedx.org/docs/latest/json/
https://cyclonedx.org/schema/bom-1.6.schema.json
https://cyclonedx.org/docs/latest/xml/
https://cyclonedx.org/schema/bom-1.6.xsd
https://cyclonedx.org/schema/bom-1.6.proto

 15

Lifecycle Phases

The Software Development Life Cycle (SDLC) is a process that outlines the phases involved in software

development from conception to deployment and maintenance. It typically includes planning, analysis,

design, implementation, testing, deployment, and maintenance; each phase has its own activities and

deliverables. The purpose of the SDLC is to provide a structured and systematic approach to software

development that ensures the final product meets the customer's requirements, is of high quality, is

delivered on time and within budget, and can be maintained and supported throughout its' lifecycle.

Lifecycle phases communicate the stage in which data in the BOM was captured. This support extends

beyond software to capture hardware, IoT, and cloud-native use cases. Different types of data may be

available at various phases of a lifecycle, and thus a BOM may include data specific to or only obtainable

in a given lifecycle. Incorporating lifecycle phases in a CycloneDX BOM provides additional context of

when and how the BOM was created. It becomes an additional datapoint that may be useful in the overall

analysis of the BOM.

CycloneDX defines the following phases:

Phase Description

Design BOM produced early in the development lifecycle containing an inventory of

components and services that are proposed or planned to be used. The inventory

may need to be procured, retrieved, or resourced prior to use.

Pre-build BOM consisting of information obtained prior to a build process and may contain

source files, development artifacts, and manifests. The inventory may need to be

resolved and retrieved prior to use.

Build BOM consisting of information obtained during a build process where component

inventory is available for use. The precise versions of resolved components are

usually available at this time as well as the provenance of where the components

were retrieved from.

Post-build BOM consisting of information obtained after a build process has completed and the

resulting components(s) are available for further analysis. Built components may exist

as the result of a CI/CD process, may have been installed or deployed to a system or

device, and may need to be retrieved or extracted from the system or device.

Operations BOM produced that represents inventory that is running and operational. This may

include staging or production environments and will generally encompass multiple

SBOMs describing the applications and operating system, along with HBOMs

describing the hardware that makes up the system. Operations Bill of Materials

(OBOM) can provide a full-stack inventory of runtime environments, configurations,

and additional dependencies.

Discovery BOM consisting of information observed through network discovery providing point-

in-time enumeration of embedded, on-premise, and cloud-native services such as

server applications, connected devices, microservices, and serverless functions.

Decommission BOM containing inventory that will be or has been retired from operations.

In addition, CycloneDX provides a mechanism to supply user-defined lifecycle phases as well.

 16

Software Asset Management (SAM) is a set of processes, policies, and procedures that help

organizations manage and optimize their software assets throughout their lifecycle. SAM involves the

identification, acquisition, deployment, maintenance, utilization, and disposal of software assets to ensure

compliance with licensing agreements, mitigate risks associated with software usage, and optimize costs.

Likewise, IT Asset Management (ITAM) has a similar function, encompassing hardware, software, and

other IT assets. Unlike the SDLC, which has widely accepted phases, SAM and ITAM lifecycles may vary.

For example, the lifecycles defined in ISO/IEC 19770-1:2017, which specifies requirements for IT asset

management systems, are different from the lifecycles defined in NIST SP 1800-5. The out-of-the-box

lifecycles provided by enterprise ITAM solutions also vary by vendor and can further be customized by

organizations adopting these products. Therefore, CycloneDX includes predefined lifecycles that apply to

both SDLC and SAM/ITAM, while also providing the flexibility in defining custom lifecycles. This allows

CycloneDX to be fully integrated with existing enterprise SAM/ITAM practices.

The following example illustrates a BOM that was produced in the build and post-build lifecycle phases. In

addition, a custom phase (platform-integration-testing) was involved as well.

"metadata": {
 "lifecycles": [
 {
 "phase": "build"
 },
 {
 "phase": "post-build"
 },
 {
 "name": "platform-integration-testing",
 "description": "Integration testing specific to the runtime platform"
 }
]
}

Support for SAM and ITAM use cases is critical for enterprise adoption. An interesting distinction between

SDLC and SAM use cases center around license compliance. Solutions supporting the SDLC typically

involve open-source license compliance or intellectual property use cases. Whereas SAM is largely

concerned with commercial license and procurement use cases. OWASP CycloneDX has extensive

support for both. Refer to the "Use Cases" chapter for more information.

https://www.iso.org/standard/68531.html
https://csrc.nist.gov/publications/detail/sp/1800-5/final

 17

Use Cases

CycloneDX provides a comprehensive inventory of all software components, libraries, frameworks, and

dependencies in a particular software application or system. It provides a detailed breakdown of the

software supply chain, enabling transparency and accountability in software development. The benefits of

BOMs are far-reaching and apply to various software, systems, and devices across different domains.

Let's explore the types of software, systems, and devices that can significantly benefit from the

transparency provided by Bills of Materials.

1. Operating Systems: Operating systems are the foundation for all software and devices, making

them a critical component to benefit from software transparency. By having an SBOM for an

operating system, developers, IT administrators, and end-users can understand the underlying

software components, identify vulnerabilities, and apply patches when necessary. This allows

them to make informed decisions regarding security, updates, and mitigating potential risks.

2. Software Applications: From productivity tools to enterprise applications, software applications of

all types can benefit from an SBOM. It helps developers and users understand the software's

building blocks, including open-source libraries, commercial components, and all other third-

party dependencies. With an SBOM, developers can track vulnerabilities, identify license

obligations, and facilitate timely updates to ensure the security and stability of their applications.

3. Internet of Things (IoT) Devices: IoT devices encompass a wide range of connected physical

objects, such as smart home devices, industrial sensors, healthcare wearables, and more.

Unfortunately, these devices often rely on software components that may introduce security

risks. By implementing an SBOM, manufacturers and users can gain visibility into the software

supply chain of IoT devices, identify vulnerabilities, and implement necessary security measures.

This transparency can enhance the security and privacy of IoT ecosystems.

4. Medical Devices: In the healthcare sector, medical devices play a crucial role in patient care and

safety. Transparency in the software components used in medical devices is paramount to

ensure their reliability and security. An SBOM can help manufacturers, regulatory authorities, and

healthcare providers understand the software components, identify potential vulnerabilities or

risks, and establish appropriate maintenance and update protocols. This can enhance patient

safety and regulatory compliance.

5. Automotive Systems: Modern vehicles heavily rely on software-driven systems for various

functionalities, including infotainment, advanced driver assistance, and autonomous driving

features. Transparency in the software components used in automotive systems is vital to ensure

safety, security, and effective maintenance. An SBOM provides the transparency necessary to

identify vulnerabilities, increase license compliance, and manage potential risks effectively.

6. Critical Infrastructure: Software systems that underpin critical infrastructure, such as power grids,

transportation networks, and financial systems, demand utmost transparency and security. An

SBOM can offer visibility into the software components used in these systems, helping

stakeholders assess vulnerabilities, apply security patches, and mitigate potential risks. This

transparency contributes to the resilience, reliability, and stability of critical infrastructure.

 18

In the context of national security and military operations, the transparency provided by Software Bill of

Materials is of utmost importance. Let's explore the specific types of software, systems, and devices in

the national security and military domain that greatly benefit from software transparency:

1. Command and Control Systems: Command and control systems are crucial in military

operations, facilitating real-time decision-making and coordination of forces. Transparency in the

software components used in these systems allows military authorities to assess potential

vulnerabilities and ensure the integrity and security of the systems. In addition, it enables the

identification of potential backdoors, unauthorized access points, or malicious components,

helping safeguard critical military operations and information.

2. Cybersecurity and Information Assurance Tools: In the realm of national security, robust

cybersecurity and information assurance tools are vital to protect against cyber threats and

ensure secure communication and data management. Software transparency in these tools

enables military authorities to evaluate the software supply chain, identify vulnerabilities, and

ensure the use of trusted and up-to-date components. This enhances the resilience and

effectiveness of cybersecurity measures and helps counter potential attacks or data breaches.

3. Cryptographic Systems and Algorithms: Cryptographic systems and algorithms are critical in

securing sensitive information, communications, and strategic operations. Transparency in the

software components underpinning cryptographic systems allows military authorities to analyze

the security properties of these components. In addition, it helps assess potential vulnerabilities,

validate the use of approved cryptographic standards, and ensure the integrity of encryption

algorithms employed in national security and military applications.

4. Intelligence Analysis and Data Processing Software: Intelligence analysis and data processing

software are vital in gathering, analyzing, and interpreting vast amounts of information for national

security purposes. Software transparency in these software systems provides military intelligence

agencies with insights into the underlying components and dependencies. It helps identify

potential vulnerabilities that could compromise the accuracy, confidentiality, or integrity of

intelligence data. This transparency assists in maintaining the security and reliability of

intelligence operations.

5. Unmanned Aerial Vehicles (UAVs) and Autonomous Systems: Unmanned Aerial Vehicles (UAVs)

and autonomous systems are increasingly employed in national security and military operations.

Transparency in the software components used in these systems enables military authorities to

evaluate potential vulnerabilities and ensure the secure and reliable operation of UAVs. In

addition, it helps identify potential risks associated with software-dependent functions, such as

autonomous navigation, target acquisition, and mission execution, contributing to the overall

effectiveness and safety of military operations.

6. Communication and Encryption Devices: Secure and reliable communication is critical for

national security and military operations. Software transparency in communication and

encryption devices, such as radios, cryptographic hardware, and secure communication

protocols, ensures the evaluation of software components involved. It helps identify

vulnerabilities, ensure compliance with encryption standards, and protect against potential

interception, tampering, or unauthorized access, strengthening the confidentiality and integrity of

sensitive communications.

The transparency provided by a Software Bill of Materials is vital to national security, benefiting a range of

software, systems, and devices. The software transparency capabilities of CycloneDX enables military

authorities to assess vulnerabilities, identify risks, and enhance the security and effectiveness of these

critical assets. This transparency contributes to the protection of national security interests and the

successful execution of military operations.

Let's explore some specific use cases that CycloneDX BOMs unlock.

 19

Inventory

A complete and accurate inventory of all first-party and third-party components is essential for risk

identification. BOMs should ideally contain all direct and transitive components and the dependency

relationships between them.

CycloneDX is capable of describing the following types of components:

Type Class Description

Application Component A software application

Container Component A packaging and/or runtime format, not specific to any particular

technology, which isolates software inside the container from

software outside of a container through virtualization technology.

Cryptographic

Asset

Component A cryptographic asset including algorithms, protocols, certificates,

keys, tokens, and secrets.

Data Component A collection of discrete values that convey information.

Device Component A hardware device such as a processor, or chip-set. A hardware

device containing firmware SHOULD include a component for the

physical hardware itself, and another component of type 'firmware' or

'operating-system' (whichever is relevant), describing information

about the software running on the device.

Device Driver Component A special type of software that operates or controls a particular type

of device.

File Component A computer file.

Firmware Component A special type of software that provides low-level control over a

device's hardware.

Framework Component A software framework

Library Component A software library. Many third-party and open source reusable

components are libraries. If the library also has key features of a

framework, then it should be classified as a framework. If not, or is

unknown, then specifying library is RECOMMENDED.

Machine

Learning Model

Component A model based on training data that can make predictions or

decisions without being explicitly programmed to do so.

Operating

System

Component A software operating system without regard to deployment model (i.e.

installed on physical hardware, virtual machine, image, etc)

Platform Component A runtime environment which interprets or executes software. This

may include runtimes such as those that execute bytecode or low-

code/no-code application platforms.

 20

Type Class Description

Service Service A service including microservices, function-as-a-service, and other

types of network or intra-process services.

The component type is a required property for every component. It is an abstract concept to

aid development and security teams with separation of concerns. The types represent the

highest level of abstraction in a modular system or design. They also aid Software Asset

Management (SAM) and IT Asset Management (ITAM) systems in classifying the inventory

of software and constituent parts.

CycloneDX supports multiple methods to assert identity including:

• Coordinates: The combination of the group, name, and version fields form the coordinates of a

component.

• Package URL: Package URL (PURL) standardizes how software package metadata is

represented so that packages can universally be identified and located.

• CPE: The Common Platform Enumeration (CPE) specification was designed for operating

systems, applications, and hardware devices. CPE is maintained by the NVD.

• SWID: Software ID (SWID) as defined in ISO/IEC 19770-2:2015 is used primarily to identify

installed software.

• OmniBOR: The OmniBOR Artifact ID is capable of identifying every source code file incorporated

into each built artifact.

• SWHID: A Software Heritage ID is a unique identifier assigned to software artifacts to facilitate

their identification, tracking, and preservation.

The following example illustrates component identity in CycloneDX.

{
 "type": "library",
 "group": "com.example",
 "name": "awesome-library",
 "version": "1.0.0",
 "cpe": "cpe:2.3:a:acme:awesome:1.0.0:*:*:*:*:*:*:*",
 "purl": "pkg:maven/com.example/awesome-library@1.0.0",
 "omniborId": ["gitoid:blob:sha1:261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64"],
 "swhid": ["swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2"],
 "swid": {
 "tagId": "swidgen-242eb18a-503e-ca37-393b-cf156ef09691_1.0.0",
 "name": "Acme Awesome Library",
 "version": "1.0.0",
 "text": {
 "contentType": "text/xml",
 "encoding": "base64",
 "content": "U1dJRCBkb2N1bWVudCBkb2VzIGhlcmU="
 }
 }
}

https://github.com/package-url/purl-spec
https://nvd.nist.gov/products/cpe
https://www.iso.org/standard/65666.html
https://omnibor.io/
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

 21

CycloneDX also supports several identifiers specific to hardware devices. Refer to

https://cyclonedx.org/capabilities/hbom/ for more information.

Assertion of identity can also be substantiated in the form of evidence, which includes the methods and

techniques used during analysis, the confidence, and the tool(s) that performed the analysis. Refer to the

"Evidence" chapter for more information.

Vulnerability Management

CycloneDX is ideal for vulnerability management and impact analysis through the support of

comprehensive inventory and assertions of component identity. With this information, security teams can

identify which components are affected by known vulnerabilities, estimate effort, and quickly prioritize

remediation.

By leveraging CycloneDX in this way, organizations can enhance their software supply chain security and

reduce the risks associated with software vulnerabilities.

Identifying known vulnerabilities in components can be achieved through the use of three

fields: cpe, purl, and swid. Not all fields apply to all types of components. Components with

a cpe, purl, or swid defined can be analyzed for known vulnerabilities.

There are many tools and platforms that support vulnerability management use cases using CycloneDX,

including OWASP Dependency-Track, often cited as a reference implementation for consuming and

analyzing SBOMs. Using a platform such as Dependency-Track, organizations can quickly identify what is

affected and where in their environment they are affected.

Not all sources of vulnerability intelligence support all three fields. The use of multiple

sources may be required to obtain accurate and actionable results.

Enterprise Configuration Management Database (CMDB)

A Configuration Management Database (CMDB) is a repository that stores information about an

organization's assets, including hardware, software, and other components. Tracking assets in a CMDB

involves collecting and maintaining accurate information about each asset's configuration, location,

status, and relationships with other assets. This information helps organizations manage their assets more

effectively, including monitoring their performance, identifying potential risks, and supporting incident

management.

Software Asset Management (SAM) and IT Asset Management (ITAM) are typical applications that build

upon CMDBs. There are tremendous benefits in capturing BOMs for assets tracked in a CMDB.

Organizations gain a more comprehensive view of their assets, which can help them make more informed

decisions about managing their IT and OT infrastructure. They also benefit from having the broadest array

of possible use cases, including DevOps, vendor risk management, procurement, vulnerability response,

and supply chain management.

CycloneDX complements and meets the requirements of ISO/IEC 19770-1:2017 which defines IT asset

management systems, including license management, security management, and asset lifecycles,

making it uniquely applicable for enterprise adoption.

Integrity Verification

Integrity verification is the process of ensuring that the software components have not been modified or

tampered with since they were released. This helps to identify unauthorized modifications to software

https://cyclonedx.org/capabilities/hbom/
https://dependencytrack.org/
https://www.iso.org/standard/68531.html

 22

components that may introduce security vulnerabilities or cause the software to malfunction. Integrity

verification uses a cryptographic hash function that is used to generate a unique digital fingerprint, or

hash value, for each software component. The hash value can then be compared with the expected hash

value for that component to ensure that it has not been altered.

CycloneDX can be used for integrity verification using cryptographic hashing algorithms. The specification

allows for the inclusion of cryptographic hashes, such as SHA-256, SHA-384, or SHA-512, for each

software component listed in the BOM. By calculating the hash of each file, package, or library and

comparing it with the hash value listed in the BOM, organizations can verify the integrity of the software

and detect unauthorized modifications.

The following example illustrates how to represent hashes on a component.

"components": [
 {
 "type": "library",
 "name": "acme-example",
 "version": "1.0.0",
 "hashes": [{
 "alg": "SHA-256",
 "content": "d88bc4e70bfb34d18b5542136639acbb26a8ae2429aa1e47489332fb389cc964"
 },{
 "alg": "BLAKE3",
 "content": "26cdc7fb3fd65fc3b621a4ef70bc7d2489d5c19e70c76cf7ec20e538df0047cf"
 }]
 }
]
}

In addition, external references (covered later in the "Relationships" chapter) also support hashes. The

following example illustrates how CycloneDX can refer to an external BOM and include the hashes for

that BOM. In doing so, the integrity of the external BOM can be evaluated prior to use.

"components": [
 {
 "type": "library",
 "group": "com.example",
 "name": "persistence",
 "version": "5.2.0",
 "externalReferences": [
 {
 "type": "bom",
 "url": "https://example.com/sbom.json",
 "hashes": [
 {
 "alg": "SHA-256",
 "content": "9048a24d72d3d4a1a0384f8f925566b44f133dd2a0194111a2daeb1cf9f7015b"
 }
]
 }
]
 }
]

CycloneDX supports SHA-1, SHA-2, and SHA-3 hashing algorithms along with BLAKE2b and BLAKE3.

By leveraging CycloneDX for integrity verification, organizations can enhance the security and reliability of

their software applications and systems.

 23

Authenticity

Authenticity refers to the assurance that a component, or the BOM itself, came from the expected source

and has not been tampered with. Authenticity can be verified through the use of digital signatures and

code-signing certificates, which are issued by trusted certificate authorities. These signatures allow users

to verify the supplier's identity and ensure that the artifact has not been modified since it was signed.

When a BOM is signed, the authenticity and integrity of the BOM can be verified. This verification can

ensure that the data in the BOM has not been altered. Using signed BOMs increases trust and

confidence in a software product, particularly in cases where the product is used in sensitive or critical

applications.

CycloneDX supports enveloped signing, including XML Signature (xmlsig) and JSON Signature Format

(JSF). In addition, detached signatures are also supported.

The following example illustrates the use of enveloped signing using JSF.

"signature": {
 "algorithm": "RS512",
 "publicKey": {
 "kty": "RSA",
 "n": "qOSWbDOGS31lv3aUZVOgqZyLVrKXXRfmxFQxEylc...",
 "e": "AQAB"
 },
 "value": "HGIX_ccdIcqmaOpkxDzKH_j0ozSHUAUyBxGpXS..."
}

License Compliance

CycloneDX is ideal for both open-source and commercial license compliance. By leveraging the licensing

capabilities of CycloneDX, organizations can identify any licenses that may be incompatible or require

specific compliance obligations, such as attribution or sharing of source code. CycloneDX supports

declared, observed, and concluded licenses.

CycloneDX can also help organizations manage their commercial software licenses by providing a clear

understanding of what licenses are in use and which ones require renewal or additional purchases, which

may impact the operational aspects of applications or systems. By leveraging CycloneDX for commercial

license compliance, organizations can reduce the risks associated with license violations, enhance their

license management practices, and align their SBOM practice with Software Asset Management (SAM)

and IT Asset Management (ITAM) systems for enterprise visibility.

Solutions supporting the Software Development Life Cycle (SDLC) typically involve open-source license

compliance or intellectual property use cases. Whereas Software Asset Management (SAM) is primarily

concerned with commercial license and procurement use cases. OWASP CycloneDX has extensive

support for both and can be applied to any component or service within a BOM.

Outdated Component Analysis

Relying on outdated components can have a significant impact on the security, stability, and performance

of the software. Outdated components may have known vulnerabilities that can be exploited by attackers,

leading to data breaches or other security issues. Additionally, newer versions of components may

include bug fixes or performance improvements that can enhance the overall functionality of the software.

Updating components is not a one-time task but a continuous process. New vulnerabilities and bugs are

constantly being discovered, and the latest updates are being released to fix them. Thus, it is crucial to

regularly check for updates and keep components up to date. Ignoring updates and running software with

outdated components can lead to increased time to mitigate vulnerabilities should a previously unknown

vulnerability become known.

 24

Identifying end-of-life components can be challenging as the data may be difficult to obtain. However,

some sources of commercial vulnerability intelligence do provide this data, and also help identify up-to-

date components that are otherwise no longer supported.

Provenance

Provenance refers to the history of the origin and ownership of a component. In the context of a software

supply chain, provenance provides a way to trace the lineage of a component and ensure its authenticity

is in alignment.

Provenance information can help software developers and users identify the source of a component, and

helps to establish trust and accountability among different parties involved in the software supply chain,

such as software vendors, distributors, and consumers.

By maintaining a record of provenance information throughout the software supply chain, organizations

can improve their ability to detect and mitigate security risks, reduce the likelihood of supply chain

attacks, and increase the overall reliability and quality of their software products.

Furthermore, regulatory compliance requirements (such as those related to data privacy, data protection,

and intellectual property) often mandate the use of provenance tracking to ensure compliance with legal

and ethical standards.

CycloneDX supports provenance via four distinct fields: author, publisher, supplier, and manufacturer. In

addition, components that are modified from the original can be described along with the complete

authorship, including commits and the person or account that authored and committed the modifications.

Pedigree

CycloneDX can represent component pedigree, including ancestors, descendants, and variants that

describe component lineage from any viewpoint and the commits, patches, and diffs which make it

unique. The addition of a digital signature applied to a component with detailed pedigree information

serves as an affirmation of the accuracy of the pedigree.

Maintaining accurate pedigree information is especially important with open-source components whose

source code is readily available, modifiable, and redistributable. Identifying changes to a component or a

components coordinates along with information describing the original component, may be necessary for

the analysis of various forms of risk.

Refer to the "Relationships" chapter for detailed information on pedigree.

Foreign Ownership, Control, or Influence (FOCI)

Foreign Ownership, Control, or Influence (FOCI) is a critical concern in the software supply chain that

should be taken seriously by all organizations involved. FOCI refers to the degree to which foreign entities

have control or influence over the operations or assets of companies in another government's jurisdiction.

FOCI is a term specific to the U.S., but many world governments have similar concepts.

Indicators that may be relevant in identifying FOCI concerns can be derived from several fields, including

author, publisher, manufacturer, and supplier but can also be extended to other fields such as the

components group name. The CPE may also indicate the vendor and the PURL can identify a potentially

foreign namespace or repository or download URL for the package. Many external references may also

provide a clue, especially those pointing to the version control system (vcs) and commit history, issue

tracker, distribution, and documentation websites.

Commercial sources of supply chain intelligence, including both physical and cyber, are available and can

aid in identifying FOCI and other supply chain risk.

 25

Export Compliance

CycloneDX can help organizations achieve export compliance in the software supply chain by providing a

comprehensive inventory of all software components used in a product, including their origin, version, and

licensing. This information can enable organizations to identify potential export control issues, such as

using components developed in foreign countries or containing encryption technology, and take

appropriate measures to ensure compliance.

Procurement

Purchasing of software and IT assets can be enhanced with bill of materials. Model contract language

that would require BOMs for all new procurements and renewals of deployable software and any IT asset

containing software should be considered. Sourcing may then strategically favor vendors who provide

BOMs or further negotiate costs with vendors that don't. Procurement processes can be enhanced to

request BOMs from vendors, which may then be consumed by the procurement system and shared with

enterprise Software Asset Management (SAM) or IT Asset Management (ITAM) systems. Automating

BOM requests, retrieval, consumption, and sharing across systems should be considered for

organizations on a quest for digital transformation.

Vendor Risk Management

A Vendor Risk Assessment (VRA) is a process used to identify and evaluate potential risks or hazards

associated with a vendor's operations and products and their potential impact on an organization. VRA is

part of an overall Vendor Risk Management process. VRAs are often an integrated part of the

procurement process for new vendors. VRAs may also be triggered periodically for existing vendors. VRA

processes can be enhanced through the use of BOMs. With BOMs, not only can the supplier of the

software or asset can be evaluated, but every supplier of the constituent components that make up the

software or asset can be evaluated. Additionally, the report from a VRA can be specified in CycloneDX

using the risk-assessment external reference type. The transparency that CycloneDX BOMs provide can

result in more impactful assessments and significant risk reduction.

Supply Chain Management

Supply chain management is a strategic discipline that encompasses the coordinated planning,

implementation, and control of the flow of goods, services, and information from the point of origin to the

point of consumption. It involves a systematic approach to optimizing every aspect of the supply chain.

Dr. W. Edwards Deming, a renowned quality management expert, emphasized the importance of

collaboration, data-driven decision-making, and a relentless pursuit of excellence throughout the entire

supply chain. Deming believed that by focusing on quality and process improvement, organizations can

achieve higher levels of customer satisfaction and long-term success.

Deming's supply chain management strategy included using fewer and better suppliers, utilizing the best

quality components from those suppliers, and tracking component usage across the entire supply chain.

By focusing on fewer suppliers, organizations can reduce variability and drive efficiency. Deming

emphasized the importance of selecting suppliers who consistently deliver top-quality components, which

improves the overall quality of products or services. Additionally, tracking component usage across the

supply chain allows organizations to identify inefficiencies, optimize processes, and eliminate waste.

Supply chain management of physical goods shares several similarities with software supply chain

management. Both disciplines involve sourcing, production, distribution, and inventory management to

ensure the smooth flow of goods or software throughout the supply chain. Just as physical goods move

from suppliers to manufacturers to end-users, software components are sourced, developed, and

integrated to create a final software product. While there are differences in the nature of the products

being managed, the core principles of efficient sourcing, production, and distribution are applicable to

physical goods and software.

 26

CycloneDX BOMs play a crucial role in supply chain management as they enhance collaboration and

enable effective supply chain management and governance of software components from sourcing to

deployment.

Composition Completeness and "Known Unknowns"

The inventory of components, services, and their relationships to one another can be described through

the use of compositions. Compositions describe constituent parts (including components, services, and

dependency relationships) and their completeness. The completeness of vulnerabilities expressed in a

BOM may also be described. This allows BOM authors to describe how complete the BOM is or if there

are components in the BOM where completeness is unknown.

Formulation Assurance and Verification

CycloneDX can describe declared and observed formulations for reproducibility throughout the product

lifecycle of components and services. This advanced capability provides transparency into how

components were made, how a model was trained, or how a service was created or deployed. Generally,

the formulation is externalized from the SBOM into a dedicated Manufacturing Bill of Material (MBOM).

The SBOM references the MBOM that describes the environment, configuration, tools, and all other

considerations necessary to replicate a build with utmost precision. This capability allows other parties to

independently verify inputs and outputs from a build which can increase the software's assurance.

Cryptography Asset Management

CycloneDX can describe a comprehensive inventory of cryptographic assets, encompassing keys,

certificates, tokens, and more. This is a requirement of the OMB M-23-02, where such a system is

characterized as a [...”software or hardware implementation of one or more cryptographic algorithms that

provide one or more of the following services: (1) creation and exchange of encryption keys; (2)

encrypted connections; or (3) creation and validation of digital signatures.”]

CycloneDX provides a structured framework for organizations to catalog and track their cryptographic

resources, facilitating efficient management and ensuring security and compliance standards are met. By

maintaining a detailed record of cryptographic assets, including their usage, expiration dates, and

associated metadata, CycloneDX enables proactive monitoring and streamlined auditing processes. With

CycloneDX, organizations can effectively safeguard their cryptographic infrastructure, mitigate risks

associated with unauthorized access or misuse, and maintain the integrity and confidentiality of sensitive

data across diverse digital environments.

Identifying Weak Cryptographic Algorithms

CycloneDX enables organizations to discover weak algorithms or flawed implementations that could

compromise security. Through analysis of cryptographic data, including algorithms, key management

practices, and usage patterns, organizations can pinpoint areas of concern and prioritize remediation

efforts. CycloneDX facilitates proactive identification of weaknesses and vulnerabilities, allowing

organizations to enhance the resilience of their cryptographic infrastructure and mitigate the risk of

exploitation, thereby bolstering overall cybersecurity posture and safeguarding sensitive data against

potential threats.

Post-Quantum Cryptography (PQC) Readiness

CycloneDX is crucial in preparing applications and systems for an impending post-quantum reality,

aligning with guidance from the National Security Agency (NSA) and the National Institute of Standards

and Technology (NIST). As quantum computing advancements threaten the security of current

cryptographic standards, CycloneDX provides a structured approach to inventorying cryptographic

assets and evaluating their resilience against quantum threats.

https://www.whitehouse.gov/wp-content/uploads/2022/11/M-23-02-M-Memo-on-Migrating-to-Post-Quantum-Cryptography.pdf

 27

Most notably, public key algorithms like RSA, DH, ECDH, DSA or ECDSA are considered not quantum-

safe. These algorithms occur in various components and may be hardcoded in applications but are more

commonly and preferably used via dedicated cryptographic libraries or services. Developers often don’t

directly interact with cryptographic algorithms such as RSA or ECDH but use them via protocols like TLS

1.3 or IPsec, by using certificates, keys, or other tokens. With upcoming cryptographic agility it becomes

less common to put in stone (or software) the algorithms that will be used. Instead, they are configured

during deployment or negotiated in each network protocol session. CycloneDX is designed with these

considerations in mind and to allow insight into the classical and quantum security level of cryptographic

assets and their dependencies.

By cataloging cryptographic algorithms and their respective parameters, CycloneDX enables

organizations to identify vulnerable or weak components that require mitigation or replacement with

quantum-resistant alternatives recommended by NSA and NIST. Through comprehensive analysis and

strategic planning facilitated by CycloneDX, organizations can proactively transition to post-quantum

cryptographic primitives, ensuring the long-term security and integrity of their systems and applications.

Assess Cryptographic Policies and Advisories

A cryptographic inventory in machine-readable form brings benefits if one wants to check for compliance

with cryptographic policies and advisories. An example of such an advisory is CNSA 2.0, which was

announced by NSA in September of 2022. CNSA 2.0 states, among other things, that National Security

Systems (NSS) for firmware and software signing needs to support and prefer CNSA 2.0 algorithms by

2025 and exclusively use them by 2030. The advised algorithms are the stateful hash-based signature

schemes LMS and XMSS from NIST SP 800-208. With a cryptographic inventory that documents the use

of LMS and XMSS by such systems, compliance with CNSA 2.0 can be assessed in an automated way.

Identify Expiring and Long-Term Cryptographic Material

CycloneDX significantly enhances the ability to identify and manage the risks associated with expiring and

long-term cryptographic material. For instance, an RSA certificate set to expire in one week inherently

presents a lower cryptographic risk compared to an identical certificate with a 20-year expiry period. This

consideration is crucial, as an expired certificate can lead to significant service downtime, compounding

the risk to operational security and reliability.

Ensure Cryptographic Certifications

Higher cryptographic assurance is provided by certifications such as FIPS 140-3 (levels 1 to 4) or

Common Criteria (EAL1 to 7). To obtain these certifications, cryptographic modules need to undergo

certification processes. For regulated environments such as FedRAMP, such certifications are important

requirements. CycloneDX allows the capture of certification levels of cryptographic assets so that this

property can be easily identified.

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
https://csrc.nist.gov/pubs/fips/140-3/final
https://www.commoncriteriaportal.org/

 28

BOM Coverage, Maturity, and Quality

NTIA Minimum Elements

The U.S. National Telecommunications and Information Administration (NTIA) defines the following

minimum elements of an SBOM. They are:

Field CycloneDX Field Description

Supplier bom.metadata.supplier,

bom.components[].supplier

The name of an entity that creates,

defines, and identifies components.

Component

Name

bom.components[].name Designation assigned to a unit of software

defined by the original supplier.

Component

Version

bom.components[].version Identifier used by the supplier to specify a

change in software from a previously

identified version.

Other Unique

Identifiers

bom.components[].cpe,purl,swid Other identifiers that are used to identify a

component, or serve as a look-up key for

relevant databases.

Dependency

Relationship

bom.dependencies[] Characterizing the relationship that an

upstream component X is included in

software Y.

Author of SBOM

Data

bom.metadata.author The name of the entity that creates the

SBOM data for this component.

Timestamp bom.metadata.timestamp Record of the date and time of the SBOM

data assembly.

CycloneDX highly encourages organizations to exceed the NTIA minimum elements whenever possible.

Suggestions for other types of data will vary by use case but generally should include:

Field CycloneDX Field Description

BOM Lifecycles bom.metadata.lifecycles[] The stage in which data in the BOM was

captured

BOM

Generation

Tools

bom.metadata.tools[] The tool(s) used to create the BOM

Component

Hash

bom.components[].hashes[] The hash values of the file or package

https://ntia.gov/
https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

 29

Field CycloneDX Field Description

Component

License

bom.components[].licenses[] The license(s) in which the component

is released under

Component

Evidence

bom.components[].evidence[].identity.* The evidence of identity including the

methods, techniques, and confidence of

how components were identified

Cryptographic

Properties

bom.components[].cryptoProperties.* The properties specific to cryptographic

assets detailing the algorithms, keys,

protocols, and other cryptographic

material

External

References

bom.components[].externalReferences[] Locations to advisories, version control

and build systems, etc

Services bom.services[].* A complete inventory of services

including endpoint URLs, data

classifications, etc which the product

and/or individual components rely on

Known

Unknowns

bom.compositions[].* Assertions on the completeness of the

inventory of components and services,

along with the completeness of

dependency relationships

SCVS BOM Maturity Model

The OWASP Software Component Verification Standard (SCVS) is a way for organizations to measure

and improve their software supply chain assurance. SCVS is required in NIST SP 800-218 (SSDF v1.1)

and similar frameworks.

In addition to the supply chain controls it recommends, SCVS also has a complementary BOM Maturity

Model which allows bill of materials to be evaluated. The model consists of:

• a formal taxonomy of different types of data possible in a bill of materials, independent of BOM

format

• a unique identifier, description, and other metadata about each item in the taxonomy

• the level of complexity or difficulty in supporting different types of data

The model can be used to evaluate:

• Incoming BOMs adherance to organizational policy by supporting the data required by various

stakeholders

• BOM generation and consumption tools

• Current and future BOM formats against each other and their alignment with organizational

requirements

Combined with the ability to create profiles, SCVS will facilitate:

https://scvs.owasp.org/
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://scvs.owasp.org/bom-maturity-model/
https://scvs.owasp.org/bom-maturity-model/

 30

• The creation of a new breed of tools (SBOM Profilers) which evaluate BOMs against various

profiles so that end users may know what types of analysis can be performed on them

• The adoption of organizational policy, defined in profiles, for what is acceptable and not

acceptable for various use cases

SBOM Quality

SBOMs can be analyzed for their overall usefulness for given use cases. The "quality" of an SBOM may

differ depending on the stakeholder role and type of analysis required for that role. Quality is a

multidimensional construct and not a single characteristic. OWASP supports a holistic view of quality. The

following illustrates an example of dimensions to consider in determining quality.

Dimension Support Description

Breadth SCVS The coverage in the types of data represented within a BOM.

Depth SCVS The amount of detail or difficulty needed to represent data within a BOM.

Lifecycles CycloneDX The number of lifecycles or the favorability of specific lifecycles in the

creation of a BOM.

Techniques CycloneDX The approaches used to determine component identity.

Confidence CycloneDX The confidence of individual techniques, and the analysis of the sum of all

techniques used to identity components.

The OWASP SCVS BOM Maturity Model is a formal taxonomy of different types of data possible in a Bill

of Materials along with the level of complexity or difficulty in supporting different types of data. The BOM

Maturity Model can be used as the basis for the Breadth and Depth dimensions.

Lifecycles are supported in CycloneDX. Refer to the "Lifecycle Phases" chapter for more information.

Evidence is also a capability of CycloneDX. Identity evidence consists of:

• The field for which the evidence describes (name, version, purl, etc)

• The overall confidence derived from all supporting evidence

https://scvs.owasp.org/bom-maturity-model/

 31

• The methods which include the techniques used to determine component identity and the

confidence of each technique

• The tools used which performed the analysis

Together, the BOM Maturity Model and native features of CycloneDX can be leveraged to form a high-

quality, high-confidence assessment of SBOM quality.

 32

Generating CycloneDX BOMs

There are many ways to generate BOMs, each method having various trade-offs. CycloneDX

recommends organizations establish a process around BOM generation that aligns with the needs of the

business and that of the BOM consumer. In practice, BOM generation is a process, not a one-time event.

As organizations mature their BOM efforts and consumers expect increased accuracy and expanded

data, having an established process that can accommodate multiple generation methods and the ability

to augment and correct BOM data throughout the generation process will provide strategic advantages.

The following process is the path most traveled by organizations that first adopt SBOMs. This process

starts with SBOM generation, which is often performed during the build process, followed by consumption

and analysis of the SBOM. Simultaneously, the SBOM is often published alongside the artifacts that result

from the build process.

For some organizations, the process above is where their journey ends. However, for many other

organizations, it's just the start. OWASP recommends that SBOM creation become an integrated and

repeatable process aiming to achieve accurate and trustworthy results. The following is an example

workflow that illustrates SBOM creation, verification, and enrichment using multiple tools and techniques.

The benefits of this approach are numerous. It starts with SBOM generation in the build lifecycle. This

typically involves a plugin specific to the build tool used, which often generates the most accurate and

complete set of initial results. Build plugins often rely on manifests that can be manipulated or, in the case

of unmanaged dependencies, may not include all dependent components.

The verification stage may involve specialized tools that perform different types of analysis against the

build artifacts and compare the findings to the results in the SBOM. If there are deltas, then the resulting

SBOM may need to be corrected.

One common scenario where correction often occurs is with modified or forked components. Manifest

and binary analysis typically falls short in properly identifying modified components. Tools may identify the

component as being modified or the upstream version but generally cannot distinguish what the

modifications were, who made them, or for what purpose. Open source is the ultimate supply chain.

Components can and will be modified. Often these modifications are to add new features or to backport

security fixes. Describing these modifications in the SBOM greatly increases its accuracy and the

perceived trustworthiness of the SBOM and the vendor who provided it. Tracking modifications is referred

to as "pedigree" and is covered later in the "Relationships" chapter.

 33

As the SBOM process evolves, it may become an integrated part of building software. One vision of this

type of process comes from DJ Schleen who proposed the following reference architecture:

The content in this architecture is beyond the scope of this guide, but is provided to illustrate what is

possible using freely available open source tools.

Approaches to Generating CycloneDX SBOMs

There are many approaches to generating SBOMs. Each has its strengths, but all provide value in an

SBOM process. Common approaches are listed below along with the lifecycles they could be executed

in.

Approach Lifecycles Description

Build Plugin Build Specialized tool that integrates directly into native build systems

Software

Factory

Pre Build, Build,

Post Build

An approach whereby the system that orchestrates builds directly

generates SBOMs

SCA Pre Build, Build,

Post Build

Software Composition Analysis, which may inspect manifests in

version control pre-build, be integrated into builds, or perform

analysis of built artifacts post-build

IAST/RASP Post Build,

Operations

Specialized tool that often involves instrumentation against running

systems

Each approach may use multiple methods and techniques to identify components and other relevant

data. The techniques used, the confidence, and call stack reachability can all be described granularly at

the component level in CycloneDX. Refer to the "Evidence" chapter for more information.

Code Commit Pre-
Commit

Container Commit

Create
SBOM

Push

Push

Repository

Tag

Release

Push Repository Release

Workflow

Build Create

SBOM

Package Release

Repository

Tag

Release

Push Repository Release

Workflow

Build Create
SBOM

Full Image SBOM

Create
Vulnerability

Evaluate
Severity

(EPSS,
CVSS)

Search
Vulnerability

CVE

CVE

Search

Guac

Add to

Vulnerability

Pipeline

Notify
Vendor

Review
Third Party Risk

Governance

Release Artifact
Repository

PackageScan

"SBOM Process" © 2023 DJ Schleen

Create

VDR

Pre-
Commit

Create
SBOM

SBOM

Convert Populate
Layer

Data

VDR

 34

Generating SBOMs for Source Files

SBOMs may describe individual source files and other digital assets in a directory or version control

system. These types of SBOMs typically include file components, file hashes, and evidence of license and

copyright statements. The primary purpose of this type of BOM is for license compliance and intellectual

property use cases. They may also be used as an OpenChain Compliance Artifact. Oftentimes, license

attribution reports can be derived from source SBOMs. Generating SBOMs from source files typically

occur in the "pre build" lifecycle.

Integrating CycloneDX Into The Build Process

Integrating SBOM generation into the software's build system is the preferred starting point for producing

SBOMs for cybersecurity use cases. Modern build systems rely on package manifests which describe the

intent to use specific dependencies. Examples of manifests include pom.xml (Java/Maven), package-

lock.json (Javascript/npm), and requirements.txt (Python).

There are three primary strategies for producing SBOMs during a build.

• Integration into build lifecycle

• Analyzing build artifacts external to lifecycle

• Software factory

Build Lifecycle vs. External to Lifecycle

Many build systems have a "lifecycle" that can affect dependency resolution. These lifecycles are often

configurable by the developers and can profoundly affect component inventory and versions. For

example, Maven resolves dependencies as it progresses through its lifecycle. A Maven build may also

include optional profiles, which can alter what dependencies are included or excluded from the final

deliverable. Analyzing pom.xml outside of Mavens' lifecycle will typically lead to erroneous results. On the

Javascript front, many plugins to npm or web frameworks can dramatically affect component inventory.

For example, many web frontends are optimized using a process called bundling which removes unused

dependencies and/or functions through a process called "tree-shaking" and aggregates the Javascript

into highly optimized bundles for efficient delivery to web and mobile browsers. In these scenarios, relying

on package-lock.json as the source of truth would lead to an erroneous SBOM containing an inventory of

components that are not distributed in the final artifact. In the case of software vendors, it is important

only to include the components that are distributed with the final software. Not doing so may lead to

increased and unnecessary support costs.

Software Factory

Integrating into individual builds, especially a build's lifecycle, has many advantages but generally takes

more effort. Another approach is to target the generation at the software factories themselves. Software

factories often comprise Continuous Integration and Continuous Delivery (CI/CD) systems. Organizations

may customize their CI/CD environment to optimize software delivery and increase the efficiency of

onboarding new software projects. A strategic option for many organizations is to reduce the effort

necessary to create SBOMs by automating as much as possible. Once configured, generating SBOMs

from software factories allows organizations to produce SBOMs for many software projects with little to

no effort. GitHub Actions, GitLab Runners, Jenkins libraries, and Circle CI orbs are often used as the

foundation for many software factories. While this approach can quickly scale across an organization, the

accuracy of the SBOMs may be impacted as the software factories orchestrate the build tools; they are

not directly part of the build systems lifecycle.

 35

Generating BOMs at Runtime

Analyzing source files or build manifests has some limitations. They do not capture the environment in

which the software is being run, the system dependencies that are used, which are not specified in the

source files or manifests, and will be limited to the inventory of software components. Generating SBOMs

at runtime is often achieved through observability or instrumentation. Examples of platforms capable of

runtime generation include:

• Interactive Application Security Testing (IAST)

• Mobile Application Security Testing (MAST)

Generating SBOMs at runtime has many benefits including:

• Capturing the dependencies that are invoked and those which are not

• Capturing system dependencies of the underlying platform or operating system

• Capturing information and configuration about the runtime environment

• Capturing the use and reliance on external services such as those provided via HTTP and MQTT

The platforms capable of runtime generation are often used as part of the software's testing phase and

orchestrated by CI systems. In addition, many IAST platforms also double as RASP (Runtime Application

Security Protection) and can proactively mitigate specific types of attacks automatically.

Generating BOMs From Evidence (from binaries)

Oftentimes, especially for legacy software, the source or build files may not be available, and runtime

instrumentation may not be possible. In these cases, analyzing the binary artifacts may be necessary.

These same approaches may also be used by security firms specializing in firmware forensics associated

with medical, IoT, and other types of devices.

Refer to the "Evidence" chapter for more information.

Building CycloneDX BOMs Manually

CycloneDX evolved in the era of DevSecOps and has a strong focus on being highly automatable. Most

CycloneDX tools are also focused on automation. However, some ecosystems such as C/C++ continue to

mostly rely on unmanaged dependencies despite the availability of package managers. In these

situations, manually managing dependencies often requires manual SBOM generation. Several tools exist

to accomplish this task including OWASP Dependency-Track.

https://dependencytrack.org/

 36

Consuming CycloneDX BOMs

Consuming CycloneDX BOMs can be done efficiently using various tools specifically designed to ingest

and analyze BOMs. In general, there are three classifications of tools. They are:

1. BOM Tools: This classification of tool is generally small, purpose-built, and often a command-line

utility. These types of tools generally focus on vulnerability scanning, license compliance, or

dependency analysis. While there are many tools that provide this functionality, a few honorable

open source mentions are Bomber, dep-scan, Grype, and Trivy. All these tools can accept

CycloneDX BOMs as input and analyze them for known security risk.

2. BOM Platforms: These higher complexity tools offer robust and collaborative features and are

generally purpose-built for BOM consumption. They typically consume BOMs from CI/CD

pipelines or external systems, such as procurement. Notable open source projects in this

category are GUAC, a supply chain intelligence platform, and OWASP Dependency-Track, a

reference platform for BOM consumption and analysis.

3. Enterprise Platforms: Often times these are large CMDB's or similar systems that provide a wide-

range of IT, procurement, and business applications. These platforms are typically more general-

purpose, capable of a wide range of use cases, including SBOM consumption.

For a list of known tools that support the CycloneDX standard, visit the CycloneDX Tool Center.

https://github.com/devops-kung-fu/bomber
https://github.com/AppThreat/dep-scan
https://github.com/anchore/grype
https://trivy.dev/
https://guac.sh/
https://dependencytrack.org/
https://cyclonedx.org/tool-center/

 37

Leveraging Data Components

Data components provide the ability to inventory data as part of a bill of material. This specialized type of

component benefits from all the other capabilities that CycloneDX provides, including tracking the

provenance and pedigree of data.

A data "type" describes the general theme or subject matter of the data being specified. The following are

supported types:

Type Description

configuration Parameters or settings that may be used by other components.

dataset A collection of data.

definition Data that can be used to create new instances of what the definition defines.

source-code Any type of code, code snippet, or data-as-code.

other Any other type of data that does not fit into existing definitions.

To help visualize a typical scenario, let's describe an application with a few different data components that

represent custom source code and configurations bundled in an application.

Other possible scenarios include:

• Inclusion of all source code that makes up a component.

• Inclusion of inline datasets bundled with a component.

• Externalizing the data components using an External Reference of type 'bom'.

• Leveraging CycloneDX lifecycles and External References to create an Operations Bill of

Materials (OBOM) linking the SBOM of the application, the HBOM of the hardware it's running

on, and describing the runtime configuration of the system in the OBOM.

 38

This example, similar to the previous illustration, involves Acme Application which includes the Javascript

source code for a shutdown hook. In this case, both are from different suppliers.

"components": [
 {
 "bom-ref": "acme-application",
 "type": "application",
 "name": "Acme Application",
 "version": "1.0.0",
 "supplier": { "name": "Acme Inc" },
 "components": [
 {
 "type": "data",
 "name": "Shutdown Hook",
 "supplier": { "name": "Example Company" },
 "data": [
 {
 "type": "source-code",
 "contents": {
 "attachment": {
 "contentType": "text/javascript",
 "encoding": "base64",
 "content": "Y29uc29sZS5sb2coJ0dvb2RCeWUnKQ=="
 }
 }
 }
]
 }
]
 }
]

CycloneDX does not attempt to normalize configurations into a common vocabulary. Systems and

applications may have specialized ways of representing configurations that are specific to them. Rather,

CycloneDX leverages existing support for name/value pairs (properties), attachments, and URLs to

external resources. With this approach, common and specialized configuration mechanisms are

supported. Consumers of BOMs with data components will need to understand the context and

semantics of the data specified.

 39

Introduction to Cryptographic Components

CycloneDX can describe cryptographic assets and their dependencies. Discovering, managing, and

reporting on cryptographic assets is necessary as the first step on the migration journey to quantum-safe

systems and applications. Cryptography is typically buried deep within components that are used to

compose and build systems and applications.

Advances in quantum computing introduce the risk of previously-secure cryptographic algorithms

becoming compromised faster than ever before. In May of 2022, the White House released a National

Security Memorandum outlining the government’s plan to secure critical systems against potential

quantum threats. This memorandum contains two key takeaways for both agency and commercial

software providers: document the potential impact of a breach, and have an alternative cryptography

solution ready.

As cryptographic systems evolve from using classical primitives to quantum-safe primitives, there is

expected to be more widespread use of cryptographic agility, or the ability to quickly switch between

multiple cryptographic primitives. Cryptographic agility serves as a security measure or incident response

mechanism when a system’s cryptographic primitive is discovered to be vulnerable or no longer complies

with policies and regulations.

As part of an agile cryptographic approach, organizations should seek to understand what cryptographic

assets they are using and facilitate the assessment of the risk posture to provide a starting point for

mitigation.

The following is a high-level architecture illustrating how cryptographic assets are implemented in

CycloneDX.

Organizations should consider including cryptographic assets in their SBOMs and optionally producing a

BOM specific for cryptographic material, otherwise known as a Cryptographic Bill of Material (CBOM).

Refer to the Authoritative Guide to CBOM for in-depth information about leveraging CycloneDX for

cryptographic use cases.

https://www.whitehouse.gov/briefing-room/statements-releases/2022/05/04/national-security-memorandum-on-promoting-united-states-leadership-in-quantum-computing-while-mitigating-risks-to-vulnerable-cryptographic-systems/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/05/04/national-security-memorandum-on-promoting-united-states-leadership-in-quantum-computing-while-mitigating-risks-to-vulnerable-cryptographic-systems/
https://cyclonedx.org/guides/

 40

Algorithm Example

A cryptographic algorithm is added in the components array of the BOM. The examples below list the

algorithm AES-128-GCM.

"components": [
 {
 "type": "cryptographic-asset",
 "name": "AES-128-GCM",
 "cryptoProperties": {
 "assetType": "algorithm",
 "algorithmProperties": {
 "primitive": "ae",
 "parameterSetIdentifier": "128",
 "mode": "gcm",
 "executionEnvironment": "software-plain-ram",
 "implementationPlatform": "x86_64",
 "certificationLevel": ["none"],
 "cryptoFunctions": ["keygen", "encrypt", "decrypt", "tag"],
 "classicalSecurityLevel": 128,
 "nistQuantumSecurityLevel": 1
 },
 "oid": "2.16.840.1.101.3.4.1.6"
 }
 }
]

 41

License Compliance

CycloneDX facilitates open-source and commercial license compliance. By leveraging the licensing

capabilities of CycloneDX, organizations can identify any licenses that may be incompatible or require

specific compliance obligations, such as attribution or sharing of source code.

Open Source Licensing

The following is an example of a components license. CycloneDX communicates this information using

the SPDX license IDs along with optionally including a Base64 encoded representation of the full license

text.

"licenses": [
 {
 "license": {
 "id": "Apache-2.0",
 "acknowledgement": "declared",
 "text": {
 "contentType": "text/plain",
 "encoding": "base64",
 "content": "RW5jb2RlZCBsaWNlbnNlIHRleHQgZ29lcyBoZXJlLg=="
 },
 "url": "https://www.apache.org/licenses/LICENSE-2.0.txt"
 }
 }
]

SPDX license expressions are also fully supported.

"licenses": [
 {
 "expression": "(LGPL-2.1 OR BSD-3-Clause AND MIT)",
 "acknowledgement": "declared"
 }
]

Declared and Concluded Licenses

Declared licenses and concluded licenses represent two different stages in the licensing process within

software development. Declared licenses refer to the initial intention of the software authors regarding the

licensing terms under which their code is released. On the other hand, concluded licenses are the result

of a comprehensive analysis of the project's codebase to identify and confirm the actual licenses of the

components used, which may differ from the initially declared licenses. While declared licenses provide

an upfront indication of the licensing intentions, concluded licenses offer a more thorough understanding

of the actual licensing within a project, facilitating proper compliance and risk management.

Acknowledgement Description

declared Declared licenses represent the initial intentions of authors regarding the licensing

terms of their code.

concluded Concluded licenses are verified and confirmed.

 42

Using Evidence To Substantiate Concluded Licenses and Track Copyrights

In addition to asserting the declared or concluded license(s) of a component, CycloneDX also supports

evidence of other licenses and copyrights found in a given component. These licenses are "observed" in

the course of analyzing a software project and form the necessary evidence to substantiate a "concluded"

license. For example:

"evidence": {
 "licenses": [
 { "license": { "id": "Apache-2.0" } },
 { "license": { "id": "LGPL-2.1-only" } }
],
 "copyright": [
 { "text": "Copyright 2012 Acme Inc. All Rights Reserved." },
 { "text": "Copyright (C) 2004,2005 University of Example" }
]
}

Refer to the "Evidence" chapter for more information.

Commercial Licensing

CycloneDX can also help organizations manage their commercial software licenses by providing a clear

understanding of what licenses are in use and which ones require renewal or additional purchases, which

may impact the operational aspects of applications or systems. By leveraging CycloneDX for commercial

license compliance, organizations can reduce the risks associated with license violations, enhance their

license management practices, and align their SBOM practice with Software Asset Management (SAM)

and IT Asset Management (ITAM) systems for enterprise visibility.

The following example illustrates a commercial license for a given component.

"licenses": [
 {
 "license": {
 "name": "Acme Commercial License",
 "licensing": {
 "licensor": {
 "organization": { "name": "Acme Inc" }
 },
 "licensee": {
 "organization": { "name": "Example Co." }
 },
 "purchaser": {
 "individual": {
 "name": "Samantha Wright",
 "email": "samantha.wright@gmail.com",
 "phone": "800-555-1212"
 }
 },
 "purchaseOrder": "PO-12345",
 "licenseTypes": ["appliance"],
 "lastRenewal": "2022-04-13T20:20:39+00:00",
 "expiration": "2023-04-13T20:20:39+00:00"
 }
 }
 }
]

 43

All commercial license fields are optional. The licensor, licensee, and purchaser may be an organization

or individual. Multiple license types may be specified and include:

License Type Description

academic A license that grants use of software solely for the purpose of education or research.

appliance A license covering use of software embedded in a specific piece of hardware.

client-access A Client Access License (CAL) allows client computers to access services provided

by server software.

concurrent-

user

A Concurrent User license (aka floating license) limits the number of licenses for a

software application and licenses are shared among a larger number of users.

core-points A license where the core of a computer's processor is assigned a specific number of

points.

custom-metric A license for which consumption is measured by non-standard metrics.

device A license that covers a defined number of installations on computers and other types

of devices.

evaluation A license that grants permission to install and use software for trial purposes.

named-user A license that grants access to the software to one or more pre-defined users.

node-locked A license that grants access to the software on one or more pre-defined computers or

devices.

oem An Original Equipment Manufacturer license that is delivered with hardware, cannot

be transferred to other hardware, and is valid for the life of the hardware.

perpetual A license where the software is sold on a one-time basis and the licensee can use a

copy of the software indefinitely.

processor-

points

A license where each installation consumes points per processor.

subscription A license where the licensee pays a fee to use the software or service.

user A license that grants access to the software or service by a specified number of

users.

other Another license type.

Solutions supporting the Software Development Life Cycle (SDLC) typically involve open-source license

compliance or intellectual property use cases. Whereas Software Asset Management (SAM) is primarily

concerned with commercial license and procurement use cases. OWASP CycloneDX has extensive

support for both and can be applied to any component or service within a BOM.

 44

Security and Quality Considerations for Tracking Commercial Licenses

When a commercial software license expires or the software has reached its licensed limits, a cascading

series of events may occur, leading to security and quality issues, posing significant risks to users and

systems. One of the immediate concerns is the denial of service, where the software ceases to function. If

the software is part of a larger system, the entirety of the system may be at risk. Moreover, expired or

exceeded licenses may trigger altered application behavior, as certain features or functionalities tied to

the license may become disabled or restricted. This alteration can introduce instability, unexpected

errors, or even malicious behavior, potentially compromising the integrity and confidentiality of data.

Expired licenses may lead to being abruptly cut off from essential updates, patches, and support

channels provided by the software vendor. This leaves systems vulnerable to newly discovered

vulnerabilities and exploits, as security patches may no longer be available. Without access to ongoing

support, users are left without recourse in the event of technical glitches or critical issues, leading to

prolonged downtime and increased susceptibility to cyberattacks. Thus, ensuring software licenses

remain current is vital for maintaining both the security and quality of software systems.

Providing commercial license information in CycloneDX BOMs offers a comprehensive solution to these

challenges. By including license details within BOMs, software consumers gain transparency into the

licensing status of components used within a software application. This transparency facilitates effective

license management, enabling organizations to track and monitor license expiration dates and renewal

requirements. Consequently, software consumers can proactively address license expirations, ensuring

uninterrupted access to critical support services, including software updates and security patches.

Overall, integrating commercial license information into CycloneDX BOMs enhances security, quality, and

compliance across the software supply chain.

 45

Establishing Relationships in CycloneDX

CycloneDX has a rich set of relationships that provide additional context and information about the

objects in the BOM's inventory. All relationships in CycloneDX are expressed explicitly. Some

relationships are declared through the natural use of the CycloneDX format. These include assemblies,

dependencies, and pedigree. Other relationships are formed via references to the object's identity in the

BOM, referred to as bom-ref. The combination of these two approaches dramatically simplifies the

specification, providing necessary guardrails to prevent deviation of its usage and providing an easy path

to supporting enveloped signing and other advanced usages.

Component Assemblies

Components in a BOM can be nested to form an assembly. An assembly is a collection of components

that are included in a parent component. As an analogy, an automotive dashboard contains an

instrument panel component. And the instrument panel component contains a speedometer component.

This nested relationship is called an assembly in CycloneDX.

Software assemblies that can be represented in CycloneDX can range from large enterprise solutions

comprising multiple systems, to cloud-native deployments containing extensive collections of related

micro-services. Assemblies can also describe simpler inclusions, such as software packages that contain

supporting files.

Assemblies, or leaves within an assembly, can independently be signed. BOMs comprising

component assemblies from multiple suppliers can benefit from this capability. Each supplier

can sign their respective assembly. The creator of final goods can then sign the BOM as a

whole.

The following example illustrates a simple component assembly. In this case, Acme Commerce Suite

includes two other applications as part of its assembly.

"components": [
 {
 "type": "application",
 "name": "Acme Commerce Suite",
 "version": "2.0.0",
 "components": [
 {
 "type": "application",
 "name": "Acme Storefront Server",
 "version": "3.7.0",
 },
 {
 "type": "application",
 "name": "Acme Payment Processor",
 "version": "3.1.1",
 }
]
 }
]

 46

In the following example, Components A-F are included in the metadata component, in this case, an

application. Component C further includes an assembly of Components D and E which is how they were

introduced as components of the application. An assembly is not an indication that Component C

depends on Component D or E, rather Component C bundles Component D and E. If Component C

depends on either D or E, dependency relationships should also be established.

Service Assemblies

Services also have assemblies and work identically to those of components. While component assemblies

describe a component that includes another component, service assemblies describe a service with other

services behind it. A common cloud pattern is the use of API gateways which proxy and orchestrate

connections to relevant microservices. The microservices themselves may not be directly accessible;

rather, they are accessed exclusively through the API gateway. For this scenario, the API gateway service

may contain an assembly of microservices behind it.

Dependencies

CycloneDX provides the ability to describe components and their dependency on other components. This

relies on a component's bom-ref to associate the component with the dependency element in the graph.

The only requirement for bom-ref is that it is unique within the BOM. Package URL (PURL) is an ideal

choice for bom-ref as it will be both unique and readable. If PURL is not an option or not all components

represented in the BOM contain a PURL, then UUID is recommended. A dependency graph is capable of

representing both direct and transitive relationships. In CycloneDX representation dependencies, a

dependency graph SHOULD be codified to be one node deep, meaning no nested child graphs. All

relations are on the same level.

 47

The dependency graph above can be codified with the following:

"dependencies": [
 {
 "ref": "acme-app",
 "dependsOn": [
 "pkg:maven/org.acme/web-framework@1.0.0",
 "pkg:maven/org.acme/persistence@3.1.0"
]
 },
 {
 "ref": "pkg:maven/org.acme/web-framework@1.0.0",
 "dependsOn": [
 "pkg:maven/org.acme/common-util@3.0.0",
 "pkg:maven/org.acme/rest-api@2.5.0"
]
 },
 {
 "ref": "pkg:maven/org.acme/common-util@3.0.0",
 "dependsOn": []
 },
 {
 "ref": "pkg:maven/org.acme/rest-api@2.5.0",
 "dependsOn": []
 }
]

Components that do not have dependencies MUST be declared as empty elements within

the graph. Components not represented in the dependency graph MAY have unknown

dependencies. It is RECOMMENDED that implementations assume this to be opaque and

not an indicator of a component being dependency-free.

As of CycloneDX v1.6, there are two types of dependencies: dependsOn and provides.

Dependency

Type

Description

dependsOn The bom-ref identifiers of the components or services that are dependencies of this

dependency object.

provides The bom-ref identifiers of the components or services that define a given specification

or standard, which are provided or implemented by this dependency object. For

example, a cryptographic library that implements a cryptographic algorithm. A

component that implements another component does not imply that the

implementation is in use.

The dependency type, dependsOn, is leveraged by classic SBOMs to define a complete graph of direct

and transitive dependencies. However, for cryptographic and similar assets, "provides" allows for many

additional use cases.

 48

The following example shows an application (nginx) that uses the libssl cryptographic library. This library

implements the TLSv1.2 protocol. The relationship between the application, the library and the protocol

can be expressed by using the dependencies properties of the SBOM standard.

Refer to the Authoritative Guide to CBOM for in-depth information about leveraging CycloneDX for

cryptographic use cases.

https://cyclonedx.org/guides/

 49

External References

External references provide a way to document systems, sites, and information that are relevant to a

component, service, or the BOM itself. External references point to resources outside the object they're

associated with and may be external to the BOM, or may refer to resources within the BOM.

External references are established through a URI (URL or URN) and, therefore, can accept any URL

scheme, including https, mailto, tel, and dns. External references may also include formally registered

URNs such as CycloneDX BOM-Link to reference CycloneDX BOMs or any object within a BOM. BOM-

Link transforms applicable external references into relationships that can be expressed in a BOM or

across BOMs.

External references provide an extensible and data-rich method of forming relationships.

Reference Type Description

vcs Version Control System

issue-tracker Issue or defect tracking system, or an Application Lifecycle Management (ALM)

system

website Website

advisories Security advisories

bom Bill-of-materials (SBOM, OBOM, HBOM, SaaSBOM, etc)

mailing-list Mailing list or discussion group

social Social media account

chat Real-time chat platform

documentation Documentation, guides, or how-to instructions

support Community or commercial support

source-

distribution

The location where the source code distributable can be obtained. This is often an

archive format such as zip or tgz. The source-distribution type complements use of

the version control (vcs) type.

distribution Direct or repository download location

distribution-

intake

The location where a component was published to. This is often the same as

"distribution" but may also include specialized publishing processes that act as an

intermediary

license The URL to the license file. If a license URL has been defined in the license node, it

should also be defined as an external reference for completeness

build-meta Build-system specific meta file (i.e. pom.xml, package.json, .nuspec, etc)

 50

Reference Type Description

build-system URL to an automated build system

release-notes URL to release notes

security-contact Specifies a way to contact the maintainer, supplier, or provider in the event of a

security incident. Common URIs include links to a disclosure procedure, a mailto

(RFC-2368) that specifies an email address, a tel (RFC-3966) that specifies a

phone number, or dns (RFC-4501) that specifies the records containing DNS

Security TXT

model-card A model card describes the intended uses of a machine learning model, potential

limitations, biases, ethical considerations, training parameters, datasets

log A record of events that occurred in a computer system or application, such as

problems, errors, or information on current operations.

configuration Parameters or settings that may be used by other components or services.

evidence Information used to substantiate a claim.

formulation Describes how a component or service was manufactured or deployed.

attestation Human or machine-readable statements containing facts, evidence, or testimony

threat-model An enumeration of identified weaknesses, threats, and countermeasures, dataflow

diagram (DFD), attack tree, and other supporting documentation in human-

readable or machine-readable format

adversary-model The defined assumptions, goals, and capabilities of an adversary

risk-assessment Identifies and analyzes the potential of future events that may negatively impact

individuals, assets, and/or the environment. Risk assessments may also include

judgments on the tolerability of each risk

vulnerability-

assertion

A Vulnerability Disclosure Report (VDR) which asserts the known and previously

unknown vulnerabilities that affect a component, service, or product including the

analysis and findings describing the impact (or lack of impact) that the reported

vulnerability has on a component, service, or product

exploitability-

statement

A Vulnerability Exploitability eXchange (VEX) which asserts the known

vulnerabilities that do not affect a product, product family, or organization, and

optionally the ones that do. The VEX should include the analysis and findings

describing the impact (or lack of impact) that the reported vulnerability has on the

product, product family, or organization

pentest-report Results from an authorized simulated cyberattack on a component or service,

otherwise known as a penetration test

 51

Reference Type Description

static-analysis-

report

SARIF or proprietary machine or human-readable report for which static analysis

has identified code quality, security, and other potential issues with the source

code

dynamic-

analysis-report

Dynamic analysis report that has identified issues such as vulnerabilities and

misconfigurations

runtime-analysis-

report

Report generated by analyzing the call stack of a running application

component-

analysis-report

Report generated by Software Composition Analysis (SCA), container analysis, or

other forms of component analysis

maturity-report Report containing a formal assessment of an organization, business unit, or team

against a maturity model

certification-

report

Industry, regulatory, or other certification from an accredited (if applicable)

certification body

quality-metrics Report or system in which quality metrics can be obtained

codified-

infrastructure

Code or configuration that defines and provisions virtualized infrastructure,

commonly referred to as Infrastructure as Code (IaC)

evidence Data collected through various forms of extraction or analysis

formulation The observed or declared formulas for how components or services were

manufactured or deployed

poam Plans of Action and Milestones (POAM) complement an "attestation" external

reference. POAM is defined by NIST as a "document that identifies tasks needing

to be accomplished. It details resources required to accomplish the elements of

the plan, any milestones in meeting the tasks and scheduled completion dates for

the milestones".

electronic-

signature

An e-signature is commonly a scanned representation of a written signature or a

stylized script of the persons name.

digital-signature A signature that leverages cryptography, typically public/private key pairs, which

provides strong authenticity verification.

rfc-9116 Document that complies with RFC-9116 (A File Format to Aid in Security

Vulnerability Disclosure)

other Use this if no other types accurately describe the purpose of the external reference

 52

The following are example external references applied to a component:

"components": [
 {
 "type": "application",
 "name": "portal-server",
 "version": "1.0.0",
 "externalReferences": [
 {
 "type": "advisories",
 "url": "https://example.org/security/feed/csaf"
 },
 {
 "type": "bom",
 "url": "https://example.org/support/sbom/portal-server/1.0.0",
 "hashes": [
 {
 "alg": "SHA-256",
 "content": "708f1f53b41f11f02d12a11b1a38d2905d47b099afc71a0f1124ef8582ec7313"
 }
]
 },
 {
 "type": "documentation",
 "url": "https://example.org/support/documentation/portal-server/1.0.0"
 }
]
 }
]

 53

Establishing Relationships With BOM-Link

With CycloneDX, it is possible to reference a component, service, or vulnerability inside a BOM from other

systems or other BOMs. This deep-linking capability is referred to as BOM-Link and is a formally

registered URN, governed by IANA, and compliant with RFC-8141.

Syntax:

urn:cdx:serialNumber/version#bom-ref

Examples:

urn:cdx:f08a6ccd-4dce-4759-bd84-c626675d60a7/1
urn:cdx:f08a6ccd-4dce-4759-bd84-c626675d60a7/1#componentA

Field Description

serialNumber The unique serial number of the BOM. The serial number MUST conform to RFC-4122.

version The version of the BOM. The default version is 1.

bom-ref The unique identifier of the component, service, or vulnerability within the BOM.

There are many use cases that BOM-Link supports. Two common scenarios are:

• Reference one BOM from another BOM

• Reference a specific component or service in one BOM from another BOM

Linking to External BOMs

As mentioned earlier, external references point to resources outside the object they're associated with

and may be external to the BOM, or may refer to resources within the BOM. External references can be

applied to individual components, services, or to the BOM itself. For example, a component could specify

an external reference pointing to the BOM describing that component.

"externalReferences": [
 {
 "type": "bom",
 "url": "urn:cdx:bdd819e6-ee8f-42d7-a4d0-166ff44d51e8/5",
 "comment": "Refers to version 5 of a specific BOM.",
 "hashes": [
 {
 "alg": "SHA-256",
 "content": "c7be1ed902fb8dd4d48997c6452f5d7e509fbcdbe2808b16bcf4edce4c07d14e"
 }
]
 }
]

There are many common use cases where referencing external BOMs is desirable. One common case

involves a component in a BOM, where the supplier of the component has published their own BOM

specific to that component. The BOM for the application may simply list the component and refer to that

component's externalized BOM for details of the inventory specific to that component. This is especially

useful for proprietary components where the inventory may not be easily obtainable.

https://www.iana.org/assignments/urn-formal/cdx
https://www.iana.org/assignments/urn-formal/cdx
https://www.iana.org/
https://www.rfc-editor.org/rfc/rfc8141.html

 54

The following illustration provides an example of such a scenario. In this case, the supplier of the Acme

Application includes Components A-F, Component C includes an assembly of D and E, and components

D, E, and F are included in the BOM for Acme Application. The BOMs for D, E, and F are external and

provided by other suppliers. The supplier of the Acme Application can leverage the BOMs provided by

those suppliers by utilizing external references. Consumers should ensure they can resolve and process

externally referencable BOMs when encountered.

The following example helps to illustrate what Component F may look like when represented in the BOM

for Acme Application:

"components": [
 {
 "bom-ref": "component-f",
 "type": "library",
 "name": "Component F",
 "version": "1.0.0",
 "externalReferences": [
 {
 "type": "bom",
 "url": "https://example.com/sbom/component-f-1.0.0.cdx.json",
 "hashes": [
 {
 "alg": "SHA-256",
 "content": "708f1f53b41f11f02d12a11b1a38d2905d47b099afc71a0f1124ef8582ec7313"
 }
]
 }
]
 }
]

Another common case involves individual BOMs, per layer, in a deployed stack. For example, a BOM

may contain multiple components, each with external references to its own individual BOMs. A hardware

component could link to the corresponding Hardware Bill of Material (HBOM), the operating system

component could link to its corresponding SBOM, and an application component could do the same.

 55

A third case involves a service defined in a BOM where the provider of the service has published a

SaaSBOM containing the individual microservices that make up that consumer-facing service. They may

also have published a corresponding SBOM defining the individual software components powering

individual services.

Linking to Objects Within The Same BOM

With BOM-Link, relationships can also be established between objects in the same BOM. For example,

let's establish a relationship where a component defines a threat model. In the example below, acme-

application defines an external reference of type threat-model and uses BOM-Link to reference another

component in the same BOM. The threat model components scope is excluded, indicating that it's

omitted from inventory. The acme-threatmodel component in this example is a data component but could

easily have been a file component. Using a data component allows for the inclusion of the threat model

itself to be captured in the BOM. This approach may be ideal for audit use cases or for instances where

access to external systems is prohibited, such as air-gapped environments.

{
 "bomFormat": "CycloneDX",
 "specVersion": "1.6",
 "serialNumber": "urn:uuid:3e671687-395b-41f5-a30f-a58921a69b79",
 "version": 1,
 "components": [
 {
 "bom-ref": "acme-application",
 "type": "application",
 "name": "Acme Application",
 "version": "1.0.0",
 "externalReferences": [
 {
 "type": "threat-model",
 "url": "urn:cdx:3e671687-395b-41f5-a30f-a58921a69b79/1#acme-threatmodel"
 }
]
 },
 {
 "bom-ref": "acme-threatmodel",
 "type": "data",
 "name": "Acme Threat Model",
 "scope": "excluded",
 "data": [
 {
 "type": "other",
 "contents": {
 "attachment": {
 "encoding": "base64",
 "contentType": "application/pdf",
 "content": "VGhyZWF0IG1vZGVsIGdvZXMgaGVyZQ=="
 }
 }
 }
]
 }
]
}

Whether the goal is a separation of concerns or increased cost efficiency and quality, the modularity that

CycloneDX provides is immensely powerful.

 56

Linking External VEX to BOM Inventory

Vulnerability Exploitability eXchange (VEX) is a core capability of CycloneDX that can convey the

exploitability of vulnerable components in the context of the product in which they're used. VEX

information may be very dynamic and subject to change, while the product's SBOM will typically remain

static until such time that the inventory changes. Therefore, it is recommended to decouple the VEX from

the BOM. This allows VEX information to be updated without having to create and track additional BOMs.

In the following example, a vulnerability is identified in a component called Jackson Databind, and the

VEX provides a direct link to the precise component within a BOM.

"vulnerabilities": [
 {
 "id": "CVE-2018-7489",
 "source": {
 "name": "NVD",
 "url": "https://nvd.nist.gov/vuln/detail/CVE-2019-9997"
 },
 "analysis": {
 "state": "not_affected",
 "justification": "code_not_reachable",
 "response": ["will_not_fix", "update"],
 "detail": "An optional explanation of why the application is not affected by the vulnerable component."
 },
 "affects": [
 {
 "ref": "urn:cdx:3e671687-395b-41f5-a30f-a58921a69b79/1#jackson-databind-2.8.0"
 }
]
 }
]

 57

Pedigree

CycloneDX can represent component pedigree including ancestors, descendants, and variants which

describe component lineage from any viewpoint and the commits, patches, and diffs which make it

unique. The addition of a digital signature applied to a component with detailed pedigree information

serves as affirmation to the accuracy of the pedigree.

Pedigree Description

ancestors Describes zero or more components from which a component is derived. This is

commonly used to describe forks from existing projects where the forked version

contains a ancestor node containing the original component it was forked from.

descendants Descendants are the exact opposite of ancestors. This provides a way to document all

forks (and their forks) of an original or root component.

variants Variants describe relations where the relationship between the components are not

known. For example, if Component A contains nearly identical code to Component B.

They are both related, but it is unclear if one is derived from the other, or if they share a

common ancestor.

The following example illustrates two important aspects of pedigree, namely identity and provenance.

"components": [
{
 "type": "library",
 "group": "com.example",
 "name": "log4j-core",
 "version": "2.14.0",
 "purl": "pkg:maven/com.example/log4j-core@2.14.0?repository_url=registry.example.com",
 "pedigree": {
 "ancestors": [
 {
 "type": "library",
 "group": "org.apache.logging.log4j",
 "name": "log4j-core",
 "version": "2.14.0",
 "purl": "pkg:maven/org.apache.logging.log4j/log4j-core@2.14.0"
 }
]
 }
 }
]

The example above illustrates two important aspects of pedigree:

1) log4j-core from the Apache LOG4J 2™ project was modified. The modified version has an

identity that is unique from its upstream source. Both the modified and original components are

represented in the pedigree relationship.

2) According to the Package URL (purl), the original component was obtained from Maven Central

(the default for Maven artifacts) while the modified component resides in a repository controlled

by example.com. The provenance of the artifacts are maintained.

 58

The pedigree capabilities in CycloneDX go much further than establishing relationships; the specification

can also optionally provide transparency into the changes that were made and their purpose. For

example, the precise commits made to the version control system can be represented.

"pedigree": {
 "ancestors": [...],
 "commits": [
 {
 "uid": "7638417db6d59f3c431d3e1f261cc637155684cd",
 "url": "https://location/to/7638417db6d59f3c431d3e1f261cc637155684cd",
 "committer": {
 "timestamp": "2022-02-13T20:20:39+00:00",
 "name": "Astra Snyder",
 "email": "astra.snyder@example.com"
 },
 "message": "Fixes security issue"
 }
]
}

Maintaining accurate pedigree information is especially important with open source components whos

source code is readily available, modifiable, and redistributable. In the following example, a patch is

described indicating that the purpose for the modification was to backport a security fix. In addition, the

diff can be attached or referenced via a URL so that SBOM consumers can independently verify the

validity and correctness of the patch.

"pedigree": {
 "ancestors": [...],
 "patches": [
 {
 "type": "backport",
 "diff": {
 "text": {
 "contentType": "text/plain",
 "encoding": "base64",
 "content": "ZXhhbXBsZSBkaWZmIGhlcmU="
 },
 "url": "https://example.com/path/to/changes.diff"
 },
 "resolves": [
 {
 "type": "security",
 "id": "CVE-2021-45105",
 "source": {
 "name": "NVD",
 "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-45105"
 }
 }
]
 }
]
}

 59

Composition Completeness and "Known Unknowns"

The inventory of components, services, and their relationships to one another can be described through

the use of compositions. Compositions describe constituent parts (including components, services, and

dependency relationships) and their completeness. The completeness of vulnerabilities expressed in a

BOM may also be described. This allows BOM authors to describe how complete the BOM is or if there

are components in the BOM where completeness is unknown or has been redacted.

Aggregate Description

complete The information is complete. No further relationships

including constituent components, services, or

dependencies are known to exist.

incomplete The information is incomplete.

incomplete_first_party_only The information is incomplete. Only relationships for first-

party components, services, or their dependencies are

represented.

incomplete_first_party_proprietary_only The information is incomplete. Only relationships for third-

party components, services, or their dependencies are

represented, limited specifically to those that are

proprietary.

incomplete_first_party_opensource_only The information is incomplete. Only relationships for third-

party components, services, or their dependencies are

represented, limited specifically to those that are

opensource.

incomplete_third_party_only The information is incomplete. Only relationships for third-

party components, services, or their dependencies are

represented.

incomplete_third_party_proprietary_only The information is incomplete. Only relationships for third-

party components, services, or their dependencies are

represented, limited specifically to those that are

proprietary.

incomplete_third_party_opensource_only The information is incomplete. Only relationships for third-

party components, services, or their dependencies are

represented, limited specifically to those that are

opensource.

unknown The information may be complete or incomplete. This

usually signifies a 'best-effort' to obtain constituent

components, services, or dependencies but the

completeness is inconclusive.

 60

The following illustrates how compositions can be used. In this example, there are three compositions.

1. In the first object, the component assembly and the dependencies of the application are both

complete.

2. In the second object, the completeness of the component assembly is unknown.

3. In the third object, the component is listed in the BOM, but its information and completeness

have been redacted.

"compositions": [
 {
 "aggregate": "complete",
 "assemblies": [
 "pkg:maven/partner/shaded-library@1.0"
],
 "dependencies": [
 "acme-application-1.0"
]
 },
 {
 "aggregate": "unknown",
 "assemblies": [
 "pkg:maven/acme/library@3.0"
]
 },
 {
 "aggregate": "redacted",
 "assemblies": [
 "my-redacted-component"
]
 }
]

 61

Formulation

CycloneDX can describe declared and observed formulations for reproducibility throughout the product

lifecycle of components and services. This advanced capability provides transparency into how

components were made, how a model was trained, or how a service was created or deployed. Generally,

the formulation is externalized from the SBOM into a dedicated Manufacturing Bill of Materials (MBOM).

The SBOM references the MBOM that describes the environment, configuration, tools, and all other

considerations necessary to replicate a build with utmost precision. This capability allows other parties to

independently verify inputs and outputs from a build which can increase the software's assurance.

Formulation establishes relationships with components and services, each of which can be referenced in

a given formula through a series of workflows, tasks, and steps. As of this writing, the "Authoritative Guide

to MBOM" is being drafted. When complete, it will serve as a reference for effectively using formulation for

a wide variety of use cases.

The following example illustrates an SBOM where a component referenced the corresponding MBOM

describing how the component was made. Independent access controls can be established by

separating the SBOM inventory from potentially highly-sensitive MBOM data. For example, this allows

organizations to provide SBOMs to a broader audience while keeping stricter control over who has

access to the MBOM.

"externalReferences": [
 {
 "type": "formulation",
 "url": "https://example.com/mboms/acme-library-1.0.cdx.json",
 "hashes": [
 {
 "alg": "SHA-256",
 "content": "c7be1ed902fb8dd4d48997c6452f5d7e509fbcdbe2808b16bcf4edce4c07d14e"
 }
]
 }
]

 62

Evidence

As we've seen, a BOM is crucial for understanding the composition of the software and its associated

risks. CycloneDX BOMs may include evidence substantiating the declared identity of components within

the BOM. Additionally, the specification includes other observations about the component inventory such

as multiple occurrences, call stack reachability, and evidence of licenses and copyrights.

Component Identity

CycloneDX includes evidence substantiating the declared identity of components within the BOM. This is

vital for communicating the quality and general trustworthiness of the BOMs' contents. Evidence helps

establish the accuracy of the BOM by validating that the declared components match the actual software

components used.

Component identity evidence is made up of the following elements:

Field

The identity field of the component which the evidence describes.

Field Description

group The grouping name or identifier. This is often a shortened, single name of the company or

project that produced the component, or its associated domain name.

name The name of the component. This will often be a shortened, single name of the

component.

version The component version

purl The Package URL (purl) specification

cpe The Common Platform Enumeration (CPE) conforming to the CPE 2.2 or 2.3 specification

omniborId The OmniBOR Artifact ID (gitoid)

swhid The Software Heritage persistent identifier

swid ISO-IEC 19770-2: Software Identification (SWID) Tags

hash The cryptographic hash of the component

 63

Confidence

Confidence is supported per-technique along with a cumulative of all methods used. The confidence is

specified as a decimal, from 0 to 1, where 1 is 100% confidence.

Concluded Value

The value of the field (cpe, purl, etc) that has been concluded based on the aggregate of all methods (if

available).

Methods

Multiple methods may be specified. Each method includes the specific technique used, the confidence of

each technique, and the value of the evidence that the technique revealed.

Techniques

The technique used in this method of analysis.

Technique Description

source-code-

analysis

Examines the source code without executing it

binary-analysis Examines a compiled binary through reverse engineering, typically via

disassembly or bytecode reversal

manifest-analysis Examines a package management system such as those used for building

software or installing software

ast-fingerprint Examines the Abstract Syntax Tree (AST) of source code or a compiled binary

hash-comparison Evaluates the cryptographic hash of a component against a set of pre-computed

hashes of identified software

instrumentation Examines the call stack of running applications by intercepting and monitoring

application logic without the need to modify the application

dynamic-analysis Evaluates a running application

filename Evaluates file name of a component against a set of known file names of identified

software

attestation A testimony to the accuracy of the identify of a component made by an individual

or entity

other Any other technique

Tools

The tools (components or services) which extracted the evidence, performed the analysis, or evaluated

the results.

 64

Example #1

The following example illustrates how different methods can be combined to substantiate a component's

identity.

"components": [
 {
 "group": "com.google.code.findbugs",
 "name": "findbugs-project",
 "version": "3.0.0",
 "purl": "pkg:maven/com.google.code.findbugs/findbugs-project@3.0.0",
 "evidence": {
 "identity": [
 {
 "field": "purl",
 "confidence": 1,
 "concludedValue": "pkg:maven/com.google.code.findbugs/findbugs-project@3.0.0",
 "methods": [
 {
 "technique": "filename",
 "confidence": 0.1,
 "value": "findbugs-project-3.0.0.jar"
 },
 {
 "technique": "hash-comparison",
 "confidence": 0.8,
 "value": "7c547a9d67cc7bc315c93b6e2ff8e4b6b41ae5be454ac249655ecb5ca2a85abf"
 }
]
 }
]
 }
 }
]

Example #2

In the following example, two identity objects provide lower-confidence alternate CPEs. Vulnerability

databases such as the National Vulnerability Database, which rely exclusively on CPE, often have

erroneous or data fidelity issues that prevent precise reporting on affected products. CycloneDX solves

this issue by allowing BOM authors to assert component identity, and optionally specify evidence of other

possible identifiers to aid in vulnerability identification.

"evidence": {
 "identity": [
 {
 "field": "cpe",
 "confidence": 0.4,
 "concludedValue": "cpe:2.3:a:acme:acme-application:1.0.0:*:*:*:*:*:*:*"
 },
 {
 "field": "cpe",
 "confidence": 0.4,
 "concludedValue": "cpe:2.3:a:acme-systems:acme-application:1.0.0:*:*:*:*:*:*:*"
 }
]
}

 65

Technique Confidence Recommendations

The following are recommendations for tool creators and BOM consumers. Each technique is a general

category. Tools may employ general purpose or highly specialized rules and analysis, each with varying

degrees of confidence.

Technique Confidence Guidance

source-code-

analysis

0.3 - 1.0 Confidence will vary based on rules, type of analyzers used, or 1:1

matching of source with a known good dataset.

binary-analysis 0.2 - 0.7 The individual rules, analyzers, and dataset coverage will influence

confidence.

manifest-analysis 0.4 - 0.6 Manifests have known limitations and abuse cases and have

moderate confidence.

ast-fingerprint 0.3 - 1.0 Wide range of possible confidence due to source and binary

variations, but it has the potential for precise results.

hash-comparison 0.7 - 1.0 Can successfully match components given a large dataset.

Confidence may vary based on the cryptographic hash function

used and its resistance to collisions.

instrumentation 0.3 - 0.8 Confidence similar to source-code-analysis with the added benefit of

supporting call-stack evidence

dynamic-analysis 0.2 - 0.6 Low to moderate confidence due to the "black box" approach of

many tools.

filename 0 - 0.1 Filename matching is low-confidence

attestation 0.7 - 1.0 The testimony of a supplier or trusted third-party, especially when

legally binding, may have high confidence.

 66

Occurrences

CycloneDX provides a mechanism to describe identical components spread across multiple locations. For

example, a component may be used by a command-line tool and included as part of a user interface. As

such, the component may be installed in multiple locations on the filesystem. CycloneDX provides a way

to represent this using evidence.

"components": [
 {
 "type": "library",
 "name": "acme-persistence",
 "version": "1.0.0",
 "evidence": {
 "occurrences": [
 {
 "bom-ref": "d6bf237e-4e11-4713-9f62-56d18d5e2079",
 "location": "/path/to/component"
 },
 {
 "bom-ref": "b574d5d1-e3cf-4dcd-9ba5-f3507eb1b175",
 "location": "/another/path/to/component"
 }
]
 }
 }
]

Reachability Using Call Stacks

Evidence of the components use through the call stack can be described using CycloneDX. This helps

organizations understand the reachability and potential impact of a specific software component. By

tracing the call stack, which describes how different components interact with each other, BOM

producers and consumers have an elevated level of confidence that a component or vulnerable function

within a component is invoked or not.

"callstack": {
 "frames": [
 {
 "package": "com.apache.logging.log4j.core",
 "module": "Logger.class",
 "function": "logMessage",
 "parameters": [
 "com.acme.HelloWorld", "Level.INFO", "null", "Hello World"
],
 "line": 150,
 "column": 17,
 "fullFilename": "/path/to/log4j-core-2.14.0.jar!/org/apache/logging/log4j/core/Logger.class"
 },
 {
 "module": "HelloWorld.class",
 "function": "main",
 "line": 20,
 "column": 12,
 "fullFilename": "/path/to/HelloWorld.class"
 }
]
}

 67

License and Copyright

CycloneDX incorporates SPDX license IDs and expressions to document stated licenses of open-source

components and individual source files. Observed licenses and copyright statements are also fully

supported in the form of evidence. In OpenChain terms, a CycloneDX BOM is classified as a compliance

artifact.

Organizations seeking OpenChain conformance should review the specification and ensure all verification

requirements are met, including fully documented processes for how the CycloneDX BOMs were created,

distributed, and archived. The CycloneDX BOM Repository Server is a simple and effective way to

automate the publishing, versioning, and archiving of BOMs.

"evidence": {
 "licenses": [
 {
 "license": {
 "id": "Apache-2.0",
 "url": "http://www.apache.org/licenses/LICENSE-2.0"
 }
 },
 {
 "license": {
 "id": "LGPL-2.1-only",
 "url": "https://opensource.org/licenses/LGPL-2.1"
 }
 }
],
 "copyright": [
 { "text": "Copyright 2012 Amce Inc. All Rights Reserved." },
 { "text": "Copyright (C) 2004,2005 Example Co" }
]
}

https://github.com/CycloneDX/cyclonedx-bom-repo-server

 68

Scenarios and Recommendations

The following recommendations are for common scenarios that are frequently cited or inquired about by

the CycloneDX community.

General Guidance

• The SBOM should have a single bom.metadata.component without subcomponents

• The SBOM should describe the software components and external services the application

depends on in bom.components and bom.services, respectively

• The SBOM should include as much information about the components and services as possible

• The SBOM should describe the dependencies between software components and any services

• The SBOM should describe the lifecycles involved in the creation of the SBOM

• The SBOM should provide evidence of component identity, the methods and techniques used,

and their associated confidence

• The SBOM should provide evidence of observed licenses and copyright statements

Microservice

• Each microservice should have an independent SBOM

• Optionally, a SaaSBOM can be leveraged to describe the inventory of all services that make up

an application

– Each service in the SaaSBOM can then reference the SBOM specific to that service

Single Application (monolith, mobile app, etc)

• Optionally, the runtime environment and configuration of the application may also be specified

Multi-Product Solution

• The SBOM should have a single bom.metadata.component and leverage subcomponents

• The "solution" is the bom.metadata.component. For each product included, ensure each is listed

as a subcomponent of bom.metadata.component

Multi-Module Product

• The SBOM should have a single bom.metadata.component without subcomponents

• Each module should be its own component, specified under bom.components. Each module may

then either:

– Include subcomponents, thus creating a hierarchy, or

– Use external references to link to each modules independent SBOM

 69

Using Modified Open Source Software

• Include component pedigree for each modified open source component

SBOM as Resource Locator

• Use of external references transforms CycloneDX into a "table of contents" for all relevant

information about a product or any component included in a product.

• Possibilities include referencing threat models, maturity models, and quality metrics

SBOM in Release Management

• For products defined in bom.metadata.component, include machine-readable release notes

• Create a publishing process for CycloneDX release notes which transforms them into PDF,

Markdown, HTML, or plain text

• Leverage custom lifecycles and properties for release management and governance

• Sign SBOMs prior to distribution

 70

Extensibility

Multiple extension points exist throughout the CycloneDX object model, allowing fast prototyping of new

capabilities and support for specialized and future use cases. The CycloneDX project maintains

extensions that are beneficial to the larger community. The project encourages community participation

and the development of extensions that target specialized or industry-specific use cases.

There are three primary means of extending CycloneDX.

• CycloneDX properties

• CycloneDX properties using registered namespace

• XML extensions

Note on hardened schemas: The XML and JSON schemas are hardened by design. This prevents

unexpected markup, object types, and values from being present in the SBOMs that have not been pre-

defined in the schemas. Hardened schemas are required for many high-assurance use cases. The

security protections inherent in hardened schemas benefit the entire CycloneDX community. While these

protections are highly beneficial, they do restrict serialization formats that are not extensible by design,

most notably JSON.

CycloneDX Properties

The CycloneDX standard is fully extensible, allowing for complex data to be represented in the BOM that

is not provided by the core specification. In many cases, name-value pairs are a simple option.

CycloneDX supports Properties which is a name-value store that can be used to describe additional data

about the components, services, or the BOM that isn't native to the core specification. Unlike key-value

stores, properties support duplicate names, each potentially having different values. CycloneDX

properties are a core part of the specification and are supported in all serialization formats, including

XML, JSON, and protocol buffers.

JSON Example

"properties": [
 {
 "name": "Foo",
 "value": "Bar"
 }
]

XML Example

<properties>
 <property name="Foo">Bar</property>
</properties>

CycloneDX Properties and Registered Namespaces

The CycloneDX standard does not impose restrictions on the property names used. However,

standardization can assist tool implementers and BOM consumers. CycloneDX achieves this through

formally registered namespaces. These namespaces prefix the property name and are defined by the

organization or project that registered the namespace.

Namespaces are hierarchical and delimited with a : and may optionally start with urn:. Examples include:

 71

cdx:gomod:binary
cdx:npm:package:bundled
cdx:pipenv:package

Organizations and open source projects can register a dedicated namespace at the CycloneDX Property

Taxonomy repository on GitHub. https://github.com/CycloneDX/cyclonedx-property-taxonomy

XML Extensions

XML is extensible by design. CycloneDX is a hardened schema, but it does allow for additional XML

elements so long as they reside in a different namespace. This extensibility allows for representing more

complex data structures in CycloneDX that would not otherwise be supported. One such extension

commonly used is XML Signature, used for enveloped signing.

<bom xmlns="http://cyclonedx.org/schema/bom/1.6"
 serialNumber="urn:uuid:3e671687-395b-41f5-a30f-a58921a69b79"
 version="1">
 <components>
 ...
 </components>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>sZjV4XcMOuD6NA9bXEd2sGWQYE0=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>...</ds:SignatureValue>
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509SubjectName>CN=bomsigner,OU=development,O=cyclonedx</ds:X509SubjectName>
 <ds:X509Certificate>...</ds:X509Certificate>
 </ds:X509Data>
 <ds:KeyValue>
 <ds:RSAKeyValue>
 <ds:Modulus>...</ds:Modulus>
 <ds:Exponent>AQAB</ds:Exponent>
 </ds:RSAKeyValue>
 </ds:KeyValue>
 </ds:KeyInfo>
 </ds:Signature>
</bom>

https://github.com/CycloneDX/cyclonedx-property-taxonomy
https://github.com/CycloneDX/cyclonedx-property-taxonomy

 72

Appendix A: Glossary

• Chain of custody - Auditable documentation of point of origin as well as the method of transfer

from point of origin to point of destination and the identity of the transfer agent.

• Component function - The purpose for which a software component exists. Examples of

component functions include parsers, database persistence, and authentication providers.

• Component type - The general classification of a software components architecture. Examples of

component types include libraries, frameworks, applications, containers, and operating systems.

• Direct dependency - A software component that is referenced by a program itself.

• Package manager - A distribution mechanism that makes software artifacts discoverable by

requesters.

• Package URL (PURL) - An ecosystem-agnostic specification which standardizes the syntax and

location information of software components.

• Pedigree - Data which describes the lineage and/or process for which software has been created

or altered.

• Point of origin - The supplier and associated metadata from which a software component has

been procured, transmitted, or received. Package repositories, release distribution platforms,

and version control history are examples of various points of origin.

• Procurement – The process of agreeing to terms and acquiring software or services for later use.

• Provenance - The chain of custody and origin of a software component. Provenance

incorporates the point of origin through distribution as well as derivatives in the case of software

that has been modified.

• Software Identification (SWID) - An ISO standard that formalizes how software is tagged.

• Software Package Data Exchange (SPDX) - A Linux Foundation project which produces a

software bill of materials specification and a standardized list of open source licenses.

• Third-party component – Any software component not directly created including open source,

"source available", and commercial or proprietary software.

• Transitive dependency - A software component that is indirectly used by a program by means of

being a dependency of a dependency.

 73

Appendix B: References

The following resources may be useful to users and adopters of this standard:

• NTIA Multistakeholder Process on Software Component Transparency, Framing Working Group.

(21 October 2021). Framing Software Component Transparency: Establishing a Common

Software Bill of Materials (SBOM), Second Edition.

https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf

• NTIA. (12 July 2021). The Minimum Elements for Software Bill of Materials.

https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

• The White House. (12 May 2021). Executive Order on Improving the Nation’s Cybersecurity.

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-

improving-the-nations-cybersecurity/

• SPDX License IDs

• SPDX License List

• OpenChain

• OWASP CycloneDX

• OWASP CycloneDX Tool Center

• OWASP CycloneDX BOM Repository Server

• OWASP Dependency-Track

• OWASP Software Component Verification Standard (SCVS)

• OWASP Software Component Verification Standard (SCVS) BOM Maturity Model

https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://spdx.dev/ids/
https://spdx.org/licenses/
https://www.openchainproject.org/
https://cyclonedx.org/
https://cyclonedx.org/tool-center/
https://github.com/CycloneDX/cyclonedx-bom-repo-server
https://dependencytrack.org/
https://scvs.owasp.org/
https://scvs.owasp.org/bom-maturity-model/

Copyright © OWASP Foundation

