(©) CycloneDX

Authoritative

Guide to SBOM
Implement and optimize use of

Software Bill of Materials

Third Edition

F)ownsp

\ ;

990000

20,
0000009

007

00000°°

ADOUL TG GUIE ... 4

COoPYNGNE ANA LICENSE ...ttt e ettt e 4
PREFACE.ot e e e e s s o e et e e e e s s e R e et e e e e e s e R e e e e e e e s e e nrrrrr e e e e e e s s anrrrees 5
THE INNOVATIVE HISTORY OF OWASP CYCLONEDXoctiiiiiiiieiiiiitee ittt siree e 6
INTRODUGTION ...ttt e e e e et e e e e e e s s s s nn e e e e e e e e s s ann R re e e e e e e e s s annnnrnneeaaeessannnnnnes 7

Design Philosophy and Guiding PriNCIPIESvviiiiiieeieeee e 7

Defining Software Bill of MaterialS.............oooiiiiiiii e 7

The Role of SBOM in Software TranSpare€nCyeeiueeieaiiiiiee ittt 7

High-Level SBOM USE CaSES.......ccoueiieeee oo 8

XBOM Capabiliti©S ...ttt e et e e e e e e e e 8
CYCLONEDX OBUJECT IMODELcuuttiiiiiieeisaaitiieeeeeae s s s sasssnseeesaeessssmsssseessaessssannssssessaesssssnnssnsseeeees 11

BOM IABNTILY . etee ittt e et e e e et e e e ettt e e e e sttt e e e e st e e e e anteeeeeenees 11

The Anatomy of @ CyCloNEDX BOMcoiiiiiiiiiiii et 11

Serialization FOMMATS ...oeiiiiiei et e e 14
LIFECYCLE PHASES ...ttt ettt e e e e e s s e e e e e e s s s nnnnnn e e e e e e e e s s annnrrnneeaaensnann 15
USE CASES ... itttk etk e s ettt e e ok b et e e s ek b bt e e e ea b b e e e e e b be e e e e R b bt e e s nabbe e e e anree e e 17

INVENTOTY o 19

Vulnerability ManagemeNnto 21

Enterprise Configuration Management Database (CMDB)..........cooooiiiiiiiiiiiiiieeeeeee 21

INEEGIILY VEITICAtION ...ttt 21

U 41T 1 o 1 SRRSO 23

LICENSE COMPIIBNCE ...ttt ettt e et e ettt e et e e e nee e e e anees 23

Outdated COMPONENT ANGIYSISeeeeeeeeeee ettt e e e e e e e e e aeeaaeeanns 23

PrOVENANCE ... 24

PEAIGIEE. .o 24

Data Provenance and Lifecycle Traceability in SBOM Generationccocociieeveeeiiiiiiinennn. 24

Foreign Ownership, Control, or Influence (FOCI)cooiiiiiie e 24

Intellectual Property (IP) Transparency and Risk Managementcccccoiiiiiiiiieeiiiieeen 25

EXPOrt COMPHANCEciiiiiiiiiiieee 25

PrOCUIEIMENT .. oo 25

Vendor Risk ManagemeENt ...t 25

Supply Chain ManagEemMENTeiiiiiiiie ettt e ettt e et e e e st e e e tneeaeen 26

Composition Completeness and "Known UnKNOWNS"ccooiiiiiiiiiiiii e, 26

Modeling External Components with Version RaNgesoooiiiiiiiiiiiiiieiieeeee e 26

Formulation Assurance and VerifiCation..........cuuvviiiiiiiiiiiiicce e 27

Cryptography Asset ManagemENTccii ittt e e e e e e e e e e ane 27

Identifying Weak CryptographiC AlgOrithmsooiiiiiiiiiiiiciceee e 27

Post-Quantum Cryptography (PQC) REAINESS........cciiiiiiiiiiiiieiiiiice e 27

Assess Cryptographic Policies and AQVISOMIEScuiaeiiiiiiiiee e 28

Identify Expiring and Long-Term Cryptographic Material..............ccovoiiiiiiiiiiiiiiiiieeec e 28

Ensure CryptographiC CertifiCationscooiieiiiiiiee e 28

BOM COVERAGE, MATURITY, AND QUALITY ...ttt 29

NTIA MiNimMUM EIEMENTS ...ttt e e e e e e e s 29
SCVS BOM Maturity MOGELeiiiiiiiiiiiiiii ettt 30
SBOM QUETIEY ettt ettt e e e e e a e 31
GENERATING CYCLONEDX BOMS ..ottt 33
Approaches to Generating CycloneDX SBOMSccoouuiiiiiiei e 34
Generating SBOMS fOr SOUICE FlESooiiiiiiiiii e 35
Integrating CycloneDX Into The Build ProCESS..........ooiiiiiiiiieeeeeeeeeee e 35
Generating BOMS @t RUNTIMEooiiiiiieii e 36
Generating BOMs From Evidence (from DINaries)cooiuviiiiiiiiiiieceeeee e 36
Building CycloneDX BOMS ManUAIIYcoooouueieiiieeeeeeee e 36
Tracking SBOM Data Provenance with Citationscooiiiiiiiiiiiiii e 36
Distribution Constraints and Traffic Light ProtoColoviiiiiiiiieeee e 37
CONSUMING CYCLONEDX BOMSooiiiiiiiiiiiiiiie ettt e e s s s st e s e e e e s s st e e s s e e s s s snntnnneeeae s 38
LEVERAGING DATA COMPONENTS ...t 39
INTRODUCTION TO CRYPTOGRAPHIC COMPONENTScciiiiiiiiiiiiiiiie et e e ssiiineee e e e 41
LICENSE COMPLIANCEot 43
OPEN SOUICE LICENSING ..ttt ettt ettt ettt e et e e et e e ettt e e et e e e e tneeeesnnneeeeen 43
Declared and CoNCIUAEA LICENSESuviiiiiiiiee ettt 43
Using Evidence To Substantiate Concluded Licenses and Track Copyrightsccccccoviieennne. 44
COMMETCIAl LICENSING .ttt ettt e ettt e et e e e et e e e s ntneeeeen 44
Security and Quality Considerations for Tracking Commercial LICENSEScccceevviiiiieeiiiiineanns 46
PATENTS AND INTELLECTUAL PROPERTY ...ttt 47
Key Use Cases for Intellectual Property TranSpar€nCy........ooovveeiiieeeeiiiiiee e 47
LT Ao U E= I = =T o SRS 48
Patent FamiliESooviiii 48
(O o] Tl o I AN Y Y= T (o] 1 49
ESTABLISHING RELATIONSHIPS IN CYCLONEDX........coiiiiiiiii 50
CompPOoNENt ASSEMDIIES.o 50
SEIVICE ASSEIMDIIESeeeiiieeee ettt e e e e ettt e e e e e e e ettt e e e e e e e e e ababeeaeeeae e e 51
DEPENAENCIES ..o 51
EXTErNal REFEIENCES ... 54
Establishing Relationships With BOM-LINKeiiiiiaiiiii e 59
T o (o (=T TSRS 63
Composition Completeness and "Known UNKNOWNS"oiiiiiiiiiiiiie e 65
0T 00TV =1 1T o OSSR 67
COMPOSADIITY ettt ettt e et e ettt e et e e e e et a e 67
EVIDENCE ... 68
(©70] g oTe] al=T a1 [0 1T U1 Y2 SRR OPPPRRRRR 68
(@ oTod U [=T 0 (o1 TS URPPRRRRR 72
Reachability Using Call STACKSuvviiiiiiiiiiie e 72
License and COPYIIGNT et e et e e 73
SCENARIOS AND RECOMMENDATIONS ..ottt 74

GENETAI GUILANCE ... ittt e et e e e et e e e et e e e ettt e e e st eeeseraeeeeen 74
Y Tl 1sY=T oV ot T PRSPPI 74
Single Application (monolith, mobile app, €1C)oiiiii e 74
MUHI=PrOAUCT SOIUTION ...ttt e e e e et e e e 74
MUIt-MOAUIE PrOGUCT ...ttt e e e e eeaeee e 74
Using Modified Open SoUrce SOfWAIEcooiiiiiiieeiee e 75
SBOM aS RESOUIMCE LOCALON ...ttt e e e e e e e e e e 75
SBOM in Release ManagemeEnt.oii ettt 75
EX T EN S Bl T Y ittt 76
CYCIONEDX PTOPEITIES ... 76
CycloneDX Properties and Registered NameSPaCESc.vvviiiiiiiiiiiiiiiee et 76
DL = 0 T o] USRS 77
APPENDIX A: GLOSSARY ...ttt ettt e e e e e st e e e e e e s s st e e e e e e e s s s eae e e e e e e e s e enrrrees 78
APPENDIX B: REFERENGCES0uuuutttttutttttttstnssssussnne 80

) owasp
About the Guide

CycloneDX is a modern standard for the software supply chain. It has been ratified as ECMA-424 by
Ecma International.

The content in this guide results from continuous community feedback and input from leading experts in
the software supply chain security field. This guide would not be possible without valuable feedback from
the CycloneDX Industry Working Group (IWG), the CycloneDX Core Working Group (CWG), the many
CycloneDX Feature Working Groups (FWG), Ecma International Technical Committee 54, and a global
network of contributors and supporters.

Copyright and License

©®

Attribution 4.0 International
(CC BY 4.0)

Copyright © 2025 The OWASP Foundation.

This document is released under the Creative Commons Attribution 4.0 International. For any reuse or
distribution, you must make clear to others the license terms of this work.

Third Edition, 21 October 2025

Version Changes ’ Updated On | Updated By

Third Edition Updated for CycloneDX v1.7 | 2025-10-21 | CycloneDX Core Working Group

Second Edition | Updated for CycloneDX v1.6 | 2024-04-09 | CycloneDX Core Working Group

First Edition Initial Release 2023-06-25 | CycloneDX Core Working Group

https://ecma-international.org/publications-and-standards/standards/ecma-424/
https://creativecommons.org/licenses/by/4.0/

&) owasp

Welcome to the Authoritative Guide series by the OWASP Foundation and OWASP CycloneDX. In this
series, we aim to provide comprehensive insights and practical guidance, ensuring that security
professionals, developers, and organizations alike have access to the latest best practices and
methodologies.

At the heart of the OWASP Foundation lies a commitment to inclusivity and openness. We firmly believe
that everyone deserves a seat at the table when it comes to shaping the future of cybersecurity
standards. Our collaborative model fosters an environment where diverse perspectives converge to drive
innovation and excellence.

In line with this ethos, the OWASP Foundation has partnered with Ecma International to create an
inclusive, community-driven ecosystem for security standards development. This collaboration empowers
individuals to contribute their expertise and insights, ensuring that standards like CycloneDX reflect the
collective wisdom of the global cybersecurity community.

One standout example of this model is OWASP CycloneDX, which has been ratified as an Ecma
International standard and is now known as ECMA-424. By leveraging the strengths of both
organizations, CycloneDX serves as a cornerstone of security best practices, providing organizations with
a universal standard for software and system transparency.

As you embark on your journey through this Authoritative Guide, we encourage you to engage actively
with the content and join us in shaping the future of cybersecurity standards. Together, we can build a
safer and more resilient digital world for all.

Andrew van der Stock
Executive Director, OWASP Foundation

&) owasp

The Innovative History of OWASP CycloneDX

OWASP CycloneDX has carved a legacy steeped in innovation, collaboration, and a commitment to
openness. OWASP continues to advance software and system transparency standards, prioritizing

capabilities that facilitate risk reduction.
O October 2025

OWASP CycloneDX v1.7

First specification supporting citations that
June 2024 O improve traceability, attribution, and auditability,
and comprehensive support for patents and

patent families to address intellectual property
transparency.

CycloneDX v1.6 ratified as an Ecma International .
standard and published as ECMA-424. O April 2024
OWASP CycloneDX v1.6

First specification to support cryptographic
December 2023 O assets for Post-Quantum Cryptography (PQC)

readiness and first general-purpose attestation

International Standardization

Ecma TC54 Established specification to digitally transform audit and
attestation workflows.

First working group chartered with holistic

supply chain goals of standardizing core data O June 2023
formats, APIs, and algorithms that advance

software and system transparency. OWASP CycIoneDX v1.5

First specification to support Al Transparency,
O configuration and data components, and
formulation describing how components were
OWASP CycloneDX V1.4 created, tested, trained, evaluated, and deployed.

First specification to introduce vulnerability
sharing and transparency, including Vulnerability O May 2021
Disclosure Reports (VDR) and Vulnerability
Exploitability eXchange (VEX). OWASP CycIoneDX v1.3

First specification to incorporate support for
May 2020 O composition completeness surpassing NTIA's

framing of "known unknowns".

OWASP CycloneDX v1.2

First specification to incorporate SWID (ISO/IEC

19770-2:2015) and services into inventory O March 2019

including data classifications, providers, and

relationships between services and components. OWASP CycloneDX v1.1

First specification with complete pedigree
O support describing component lineage and the
commits, patches, and diffs which make a forked
version unique.

OWASP CycloneDX v1.0

First general-purpose, security-focused Bill of
Materials standard supporting software and
hardware components. Introduced the world to
Package-URL for software security use cases.

Source: https.//tc54.org/history

https://tc54.org/history
https://tc54.org/history

&) owasp

CycloneDX is a modern standard for the software supply chain. At its core, CycloneDX is a general-
purpose Bill of Materials (BOM) standard capable of representing software, hardware, services, and other
types of inventory. CycloneDX is an OWASP flagship project, has a formal standardization process and
governance model through Ecma Technical Committee 54, and is supported by the global information
security community.

The simplicity of design is at the forefront of the CycloneDX philosophy. The format is easily
understandable by a wide range of technical and non-technical roles. CycloneDX is a full-stack BOM
format with many advanced capabilities that are achieved without sacrificing the design philosophy. Some
guiding principles influencing its design include:

o Be easy to adopt and easy to contribute to

o Identify risk to as many adopters as possible, as quickly as possible
e Avoid blockers that prevent the identification of risk

e Continuous improvement - innovate quickly and improve over time
e Encourage innovation and competition through extensions

e Produce immutable and backward-compatible releases

e Focus on high degrees of automation

e Provide a smooth path to specification compliance through prescriptive design

The U.S. Cybersecurity and Infrastructure Security Administration (CISA) defines software bill of materials
as "a formal, machine-readable inventory of software components and dependencies, information about
those components, and their relationships." OWASP CycloneDX implements this definition and extends it
in many ways, including adding services as a foundational component in a Software Bill of Materials. It
also aligns with the European Union’s Cyber Resilience Act (CRA), which requires the creation of SBOMs
as part of product security documentation, and with the German Federal Office for Information Security
(BSI) Technical Guideline TR-03183-2, which defines the recommended minimum requirements for
SBOMs.

Software transparency involves providing clear and accurate information about the components used in
an application, including their name, version, supplier, and any dependencies required by the component.
This information helps identify and manage the risks associated with the software whilst also enabling
compliance with relevant regulations and standards. With the growing importance of software in our daily
lives, transparency is critical to building trust in software and ensuring that it is safe, secure, and reliable.

SBOMs are the vehicle through which software transparency can be achieved. With SBOMs, parties
throughout the software supply chain can leverage the information within to enable various use cases that
would not otherwise be easily achievable. SBOMs play a vital role in promoting software transparency,
allowing users to make informed decisions about the software they use.

https://tc54.org/
https://www.bsi.bund.de/
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03183/BSI-TR-03183-2_v2_1_0.html

&) owasp

A complete and accurate inventory of all first-party and third-party components is essential for risk
identification. SBOMs should ideally contain all direct and transitive components and the dependency
relationships between them.

CycloneDX far exceeds the Minimum Elements for Software Bill of Materials as defined by the National
Telecommunications and Information Administration (NTIA) in response to U.S. Executive Order 14028.

Adopting CycloneDX allows organizations to quickly meet these minimum requirements and mature into
using more sophisticated use cases over time. CycloneDX is capable of achieving all SBOM requirements
defined in the OWASP Software Component Verification Standard (SCVS).

A few high-level use cases for SBOM include:

e Product security, architectural, and license risk
e Procurement and M&A

e Software component transparency

e Supply chain transparency

e Vendor risk management

CycloneDX provides advanced supply chain capabilities for cyber risk reduction. Among these
capabilities are:

e Software Bill of Materials (SBOM)

e Software-as-a-Service Bill of Materials (SaaSBOM)
e Hardware Bill of Materials (HBOM)

e Machine Learning Bill of Materials (ML-BOM)
e Cryptography Bill of Materials (CBOM)

e Operations Bill of Materials (OBOM)

e Manufacturing Bill of Materials (MBOM)

e Bill of Vulnerabilities (BOV)

e Vulnerability Disclosure Report (VDR)

o Vulnerability Exploitability eXchange (VEX)

o CycloneDX Attestations (CDXA)

e Common Release Notes Format

https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.gov/
https://www.ntia.gov/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://owasp.org/scvs

&) owasp

SBOMs describe the inventory of software components and services and the dependency relationships
between them. A complete and accurate inventory of all first-party and third-party components is
essential for risk identification. SBOMs should ideally contain all direct and transitive components and the
dependency relationships between them.

SaaSBOMs provide an inventory of services, endpoints, and data flows and classifications that power
cloud-native applications. CycloneDX is capable of describing any type of service, including
microservices, Service Orientated Architecture (SOA), Function as a Service (FaaS), and System of
Systems.

SaaSBOMs complement Infrastructure-as-Code (1aC) by providing a logical representation of a complex
system, complete with an inventory of all services, their reliance on other services, endpoint URLs, data
classifications, and the directional flow of data between services. Optionally, SaaSBOMs may also include
the software components that make up each service.

CycloneDX supports many types of components, including hardware devices, making it ideal for use with
consumer electronics, loT, ICS, and other types of embedded devices. CycloneDX fills an important role
in between traditional e BOM and mBOM use cases for hardware devices.

ML-BOMSs provide transparency for machine learning models and datasets, which provide visibility into
possible security, privacy, safety, and ethical considerations. CycloneDX standardizes model cards in a
way where the inventory of models and datasets can be used independently or combined with the
inventory of software and hardware components or services defined in HBOMs, SBOMs, and
SaaSBOMs.

A Cryptography Bill of Materials (CBOM) describes cryptographic assets and their dependencies.
Discovering, managing, and reporting on cryptographic assets is necessary as the first step on the
migration journey to quantum-safe systems and applications. Cryptography is typically buried deep within
components used to compose and build systems and applications. As part of an agile cryptographic
approach, organizations should seek to understand what cryptographic assets they are using and
facilitate the assessment of the risk posture to provide a starting point for mitigation.

OBOMs provide a full-stack inventory of runtime environments, configurations, and additional
dependencies. CycloneDX is a full-stack bill of materials standard supporting entire runtime environments
consisting of hardware, firmware, containers, operating systems, applications, and libraries. Coupled with
the ability to specify configuration makes CycloneDX ideal for Operations Bill of Materials.

CycloneDX can describe declared and observed formulations for reproducibility throughout the product
lifecycle of components and services. This advanced capability provides transparency into how
components were made, how a model was trained, or how a service was created or deployed. In
addition, every component and service in a CycloneDX BOM can optionally specify formulation and do so
in existing BOMs or in dedicated MBOMs. By externalizing formulation into dedicated MBOMs, SBOMs
can link to MBOM s for their components and services, and access control can be managed
independently. This allows organizations to maintain tighter control over what parties gain access to

&) owasp

inventory information in a BOM and what parties have access to MBOM information which may have
higher sensitivity and data classification.

CycloneDX BOMs may consist solely of vulnerabilities and thus can be used to share vulnerability data
between systems and sources of vulnerability intelligence. Complex vulnerability data can be
represented, including the vulnerability source, references, multiple severities, risk ratings, details and
recommendations, and the affected software and hardware, along with their versions.

VDRs communicate known and unknown vulnerabilities affecting components and services. Known
vulnerabilities inherited from the use of third-party and open-source software can be communicated with
CycloneDX. Previously unknown vulnerabilities affecting both components and services may also be
disclosed using CycloneDX, making it ideal for Vulnerability Disclosure Report (VDR) use cases.
CycloneDX exceeds the data field requirements defined in ISO/IEC 29147:2018 for vulnerability
disclosure information.

VEX conveys the exploitability of vulnerable components in the context of the product in which they're
used. VEXis a subset of VDR. Oftentimes, products are not affected by a vulnerability simply by including
an otherwise vulnerable component. VEX allows software vendors and other parties to communicate the
exploitability status of vulnerabilities, providing clarity on the vulnerabilities that pose a risk and the ones
that do not.

CycloneDX Attestations enable organizations to communicate security standards, claims, and evidence
about security requirements, and attestations to the veracity and completeness of those claims.
CycloneDX Attestations is a way to manage "compliance as code."

CycloneDX standardizes release notes into a common, machine-readable format. This capability unlocks
new workflow potential for software publishers and consumers alike. This functionality works with or
without the Bill of Materials capabilities of the specification.

10

https://www.iso.org/standard/72311.html

&) owasp

The CycloneDX object model is a structured framework for representing information relevant for software
and system transparency. Designed for clarity, precision, and extensibility, it organizes complex supply
chain data into a well-defined schema that is both machine-readable and human-friendly. This model
forms the backbone of CycloneDX's ability to support diverse use cases ranging from vulnerability
management and license compliance to cryptographic transparency and operational assurance.

Within the root bom element, CycloneDX defines the following object types:

The object types are arranged in order and contain (but are not limited to) the following types of data:

The bom element has properties for serialNumber and version. Together these two properties form the
identity of a BOM. A BOM's identity can be expressed using a BOM-Link, a formally registered URN
capable of referencing a BOM or any component, service, or vulnerability in a BOM. Refer to the chapter
on Relationships for more information.

Every BOM generated should have a unique serial number, even if the contents of the BOM have not
changed over time. If specified, the serial number must conform to RFC-4122. The use of serial numbers
is recommended.

Whenever an existing BOM is modified, either manually or through automated processes, the version of
the BOM should be incremented by 1. When a system is presented with multiple BOMs with identical
serial numbers, the system should use the most recent version of the BOM. The default version is '1".

The following are descriptions of the root-level elements of a CycloneDX BOM.

BOM metadata includes the supplier, manufacturer, and target component for which the BOM describes.
It also includes the tools used to create the BOM, and license information for the BOM document itself.

Supplier Authors Component

Metadata
Manufacturer Tools Lifecycles

Components describe the complete inventory of first-party and third-party components. The specification
can represent software, hardware devices, machine learning models, source code, and configurations,
along with the manufacturer information, license and copyright details, and complete pedigree and
provenance for every component.

11

&) owasp

Supplier Identity Pedigree Provenance Evidence

Components
Component Type Licenses Hashes Release Notes Relationships

Services represent external APIs that the software may call. They describe endpoint URIs, authentication
requirements, and trust boundary traversals. The data flow between software and services can also be
described, including the data classifications and the flow direction of each type.

Provider Data Classification Trust Zone

Services
Endpoints Data Flow Relationships

CycloneDX provides the ability to describe components and their dependency on other components. The
dependency graph is capable of representing both direct and transitive relationships. Components that
depend on services can be represented in the dependency graph, and services that depend on other
services can be represented as well.

Dependencies Components Services

Compositions describe constituent parts (including components, services, and dependency relationships)
and their completeness. The aggregate of each composition can be described as complete, incomplete,
incomplete first-party only, incomplete third-party only, or unknown.

Completeness of:

Compositions Components Services Dependencies Vulnerabilities

Known vulnerabilities inherited from the use of third-party and open-source software and the exploitability
of the vulnerabilities can be communicated with CycloneDX. Previously unknown vulnerabilities affecting
both components and services may also be disclosed using CycloneDX, making it ideal for both
vulnerability disclosure and VEX use cases.

Details Source Exploitability (VEX) Targets Affected Proof of Concept

Vulnerabilities
Advisories Risk Ratings Evidence Version Ranges Recommendations

Formulation describes how something was manufactured or deployed. CycloneDX achieves this through
the support of multiple formulas, workflows, tasks, and steps, which represent the declared formulation
for reproduction along with the observed formula describing the actions which transpired in the
manufacturing process.

Formulas Trigger Runtime Components

Formulation
Workflows Tasks Steps Services

12

&) owasp

Annotations contain comments, notes, explanations, or similar textual content which provide additional
context to the object(s) being annotated. They are often automatically added to a BOM via a tool or as a
result of manual review by individuals or organizations. Annotations can be independently signed and
verified using digital signatures.

Per Person Per Organization Per Tool

Annotations
Details Timestamp Signature

Standards, requirements, levels, and all supporting documentation are defined here. CycloneDX provides
a general-purpose, machine-readable way to define virtually any type of standard. Security standards
such as OWASP ASVS, MASVS, SCVS, and SAMM are available in CycloneDX format. Standards from
other bodies are available as well. Additionally, organizations can create internal standards and represent
them in CycloneDX.

Definitions Standards Requirements Levels

Declarations describe the conformance to standards. Each declaration may include attestations, claims,
counter-claims, evidence, counter-evidence, along with conformance and confidence. Signatories can
also be declared and supports both digital and analog signatures. Declarations provide the basis for
"compliance-as-code".

Attestations Evidence Conformance Mitigation Strategies Assessors

Declarations
Claims Counter Evidence Confidence Signatories Signatures

Citations identify who contributed specific pieces of information to a CycloneDX BOM and when that
contribution was made. They connect data in the BOM to its source, whether that’s a tool, person,
organization, or process. This traceability adds transparency, helping others assess the reliability and
origin of the data. Citations are essential when multiple sources contribute to the same BOM.

JSON Pointer Attribution Timestamp

Citations
JSON Path Process Signature

Multiple extension points exist throughout the CycloneDX object model, allowing fast prototyping of new
capabilities and support for specialized and future use cases. The CycloneDX project maintains
extensions that are beneficial to the larger community. The project encourages community participation
and the development of extensions that target specialized or industry-specific use cases.

Properties Per Organization Per Team

Extensions
Formal Taxonomy Per Industry

13

) owasp
Serialization Formats

CycloneDX can be represented in JSON, XML, and Protocol Buffers (protobuf) and has corresponding
schemas for each.

Format ‘ Resource ‘ URL

JSON Documentation | https://cyclonedx.org/docs/latest/json/

JSON Schema https://cyclonedx.org/schema/bom-1.7.schema.json
XML Documentation | https://cyclonedx.org/docs/latest/xml/

XML Schema https://cyclonedx.org/schema/bom-1.7.xsd
Protobuf | Schema https://cyclonedx.org/schema/bom-1.7.proto

CycloneDX relies exclusively on JSON Schema, XML Schema, and protobuf for validation. The entirety of
the specification can be validated using officially supported CycloneDX tools or via hundreds of available
validators that support JSON Schema, XML Schema, or protobuf.

14

https://cyclonedx.org/docs/latest/json/
https://cyclonedx.org/schema/bom-1.7.schema.json
https://cyclonedx.org/docs/latest/xml/
https://cyclonedx.org/schema/bom-1.7.xsd
https://cyclonedx.org/schema/bom-1.7.proto

&) ownsp

Lifecycle Phases

The Software Development Life Cycle (SDLC) is a process that outlines the phases involved in software
development from conception to deployment and maintenance. It typically includes planning, analysis,
design, implementation, testing, deployment, and maintenance; each phase has its own activities and
deliverables. The purpose of the SDLC is to provide a structured and systematic approach to software
development that ensures the final product meets the customer's requirements, is of high quality, is
delivered on time and within budget, and can be maintained and supported throughout its' lifecycle.

Lifecycle phases communicate the stage in which data in the BOM was captured. This support extends
beyond software to capture hardware, 10T, and cloud-native use cases. Different types of data may be
available at various phases of a lifecycle, and thus a BOM may include data specific to or only obtainable
in a given lifecycle. Incorporating lifecycle phases in a CycloneDX BOM provides additional context of
when and how the BOM was created. It becomes an additional datapoint that may be useful in the overall
analysis of the BOM.

CycloneDX defines the following phases:

Phase Description

Design BOM produced early in the development lifecycle containing an inventory of
components and services that are proposed or planned to be used. The inventory
may need to be procured, retrieved, or resourced prior to use.

Pre-build BOM consisting of information obtained prior to a build process and may contain
source files, development artifacts, and manifests. The inventory may need to be
resolved and retrieved prior to use.

Build BOM consisting of information obtained during a build process where component
inventory is available for use. The precise versions of resolved components are
usually available at this time as well as the provenance of where the components
were retrieved from.

Post-build BOM consisting of information obtained after a build process has completed and the
resulting components(s) are available for further analysis. Built components may exist
as the result of a CI/CD process, may have been installed or deployed to a system or
device, and may need to be retrieved or extracted from the system or device.

Operations BOM produced that represents inventory that is running and operational. This may
include staging or production environments and will generally encompass multiple
SBOMs describing the applications and operating system, along with HBOMs
describing the hardware that makes up the system. Operations Bill of Materials
(OBOM) can provide a full-stack inventory of runtime environments, configurations,
and additional dependencies.

Discovery BOM consisting of information observed through network discovery providing point-
in-time enumeration of embedded, on-premise, and cloud-native services such as
server applications, connected devices, microservices, and serverless functions.

Decommission | BOM containing inventory that will be or has been retired from operations.

In addition, CycloneDX provides a mechanism to supply user-defined lifecycle phases as well.

18

&) owasp

Software Asset Management (SAM) is a set of processes, policies, and procedures that help
organizations manage and optimize their software assets throughout their lifecycle. SAM involves the
identification, acquisition, deployment, maintenance, utilization, and disposal of software assets to ensure
compliance with licensing agreements, mitigate risks associated with software usage, and optimize costs.
Likewise, IT Asset Management (ITAM) has a similar function, encompassing hardware, software, and
other IT assets. Unlike the SDLC, which has widely accepted phases, SAM and ITAM lifecycles may vary.
For example, the lifecycles defined in ISO/IEC 19770-1:2017, which specifies requirements for IT asset
management systems, are different from the lifecycles defined in NIST SP 1800-5. The out-of-the-box
lifecycles provided by enterprise ITAM solutions also vary by vendor and can further be customized by
organizations adopting these products. Therefore, CycloneDX includes predefined lifecycles that apply to
both SDLC and SAM/ITAM, while also providing the flexibility in defining custom lifecycles. This allows
CycloneDX to be fully integrated with existing enterprise SAM/ITAM practices.

_ I 04 05) 06 07

DESIGN POST-BUILD OPERATIONS DISCOVERY DECOMMISSION

The following example illustrates a BOM that was produced in the build and post-build lifecycle phases. In
addition, a custom phase (platform-integration-testing) was involved as well.

"metadata™: {

"lifecycles™: [
{
"phase": "build"
+
{
"phase": "post-build"
I
{

"name": "platform-integration-testing”,
"description”: "Integration testing specific to the runtime platform"
b
]
b

Support for SAM and ITAM use cases is critical for enterprise adoption. An interesting distinction between
SDLC and SAM use cases center around license compliance. Solutions supporting the SDLC typically
involve open-source license compliance or intellectual property use cases. Whereas SAM is largely
concerned with commercial license and procurement use cases. OWASP CycloneDX has extensive
support for both. Refer to the "Use Cases" chapter for more information.

16

https://www.iso.org/standard/68531.html
https://csrc.nist.gov/publications/detail/sp/1800-5/final

&) owasp

CycloneDX provides a comprehensive inventory of all software components, libraries, frameworks, and
dependencies in a particular software application or system. It provides a detailed breakdown of the
software supply chain, enabling transparency and accountability in software development. The benefits of
BOMs are far-reaching and apply to various software, systems, and devices across different domains.
Let's explore the types of software, systems, and devices that can significantly benefit from the
transparency provided by Bills of Materials.

1. Operating Systems: Operating systems are the foundation for all software and devices, making
them a critical component to benefit from software transparency. By having an SBOM for an
operating system, developers, IT administrators, and end-users can understand the underlying
software components, identify vulnerabilities, and apply patches when necessary. This allows
them to make informed decisions regarding security, updates, and mitigating potential risks.

2. Software Applications: From productivity tools to enterprise applications, software applications of
all types can benefit from an SBOM. It helps developers and users understand the software's
building blocks, including open-source libraries, commercial components, and all other third-
party dependencies. With an SBOM, developers can track vulnerabilities, identify license
obligations, and facilitate timely updates to ensure the security and stability of their applications.

3. Internet of Things (IoT) Devices: loT devices encompass a wide range of connected physical
objects, such as smart home devices, industrial sensors, healthcare wearables, and more.
Unfortunately, these devices often rely on software components that may introduce security
risks. By implementing an SBOM, manufacturers and users can gain visibility into the software
supply chain of loT devices, identify vulnerabilities, and implement necessary security measures.
This transparency can enhance the security and privacy of loT ecosystems.

4. Medical Devices: In the healthcare sector, medical devices play a crucial role in patient care and
safety. Transparency in the software components used in medical devices is paramount to
ensure their reliability and security. An SBOM can help manufacturers, regulatory authorities, and
healthcare providers understand the software components, identify potential vulnerabilities or
risks, and establish appropriate maintenance and update protocols. This can enhance patient
safety and regulatory compliance.

5. Automotive Systems: Modern vehicles heavily rely on software-driven systems for various
functionalities, including infotainment, advanced driver assistance, and autonomous driving
features. Transparency in the software components used in automotive systems is vital to ensure
safety, security, and effective maintenance. An SBOM provides the transparency necessary to
identify vulnerabilities, increase license compliance, and manage potential risks effectively.

6. Critical Infrastructure: Software systems that underpin critical infrastructure, such as power grids,
transportation networks, and financial systems, demand utmost transparency and security. An
SBOM can offer visibility into the software components used in these systems, helping
stakeholders assess vulnerabilities, apply security patches, and mitigate potential risks. This
transparency contributes to the resilience, reliability, and stability of critical infrastructure.

17

&) owasp

In the context of national security and military operations, the transparency provided by Software Bill of
Materials is of utmost importance. Let's explore the specific types of software, systems, and devices in
the national security and military domain that greatly benefit from software transparency:

1.

Command and Control Systems: Command and control systems are crucial in military
operations, facilitating real-time decision-making and coordination of forces. Transparency in the
software components used in these systems allows military authorities to assess potential
vulnerabilities and ensure the integrity and security of the systems. In addition, it enables the
identification of potential backdoors, unauthorized access points, or malicious components,
helping safeguard critical military operations and information.

Cybersecurity and Information Assurance Tools: In the realm of national security, robust
cybersecurity and information assurance tools are vital to protect against cyber threats and
ensure secure communication and data management. Software transparency in these tools
enables military authorities to evaluate the software supply chain, identify vulnerabilities, and
ensure the use of trusted and up-to-date components. This enhances the resilience and
effectiveness of cybersecurity measures and helps counter potential attacks or data breaches.

Cryptographic Systems and Algorithms: Cryptographic systems and algorithms are critical in
securing sensitive information, communications, and strategic operations. Transparency in the
software components underpinning cryptographic systems allows military authorities to analyze
the security properties of these components. In addition, it helps assess potential vulnerabilities,
validate the use of approved cryptographic standards, and ensure the integrity of encryption
algorithms employed in national security and military applications.

Intelligence Analysis and Data Processing Software: Intelligence analysis and data processing
software are vital in gathering, analyzing, and interpreting vast amounts of information for national
security purposes. Software transparency in these software systems provides military intelligence
agencies with insights into the underlying components and dependencies. It helps identify
potential vulnerabilities that could compromise the accuracy, confidentiality, or integrity of
intelligence data. This transparency assists in maintaining the security and reliability of
intelligence operations.

Unmanned Aerial Vehicles (UAVs) and Autonomous Systems: Unmanned Aerial Vehicles (UAVs)
and autonomous systems are increasingly employed in national security and military operations.
Transparency in the software components used in these systems enables military authorities to
evaluate potential vulnerabilities and ensure the secure and reliable operation of UAVs. In
addition, it helps identify potential risks associated with software-dependent functions, such as
autonomous navigation, target acquisition, and mission execution, contributing to the overall
effectiveness and safety of military operations.

Communication and Encryption Devices: Secure and reliable communication is critical for
national security and military operations. Software transparency in communication and
encryption devices, such as radios, cryptographic hardware, and secure communication
protocols, ensures the evaluation of software components involved. It helps identify
vulnerabilities, ensure compliance with encryption standards, and protect against potential
interception, tampering, or unauthorized access, strengthening the confidentiality and integrity of
sensitive communications.

The transparency provided by a Software Bill of Materials is vital to national security, benefiting a range of
software, systems, and devices. The software transparency capabilities of CycloneDX enables military
authorities to assess vulnerabilities, identify risks, and enhance the security and effectiveness of these
critical assets. This transparency contributes to the protection of national security interests and the
successful execution of military operations.

Let's explore some specific use cases that CycloneDX BOMs unlock.

18

Inventory

&) ownsp

A complete and accurate inventory of all first-party and third-party components is essential for risk
identification. BOMs should ideally contain all direct and transitive components and the dependency
relationships between them.

CycloneDX is capable of describing the following types of components:

Type Class Description

Application Component | A software application

Container Component | A packaging and/or runtime format, not specific to any particular
technology, which isolates software inside the container from
software outside of a container through virtualization technology.

Cryptographic Component | A cryptographic asset including algorithms, protocols, certificates,

Asset keys, tokens, and secrets.

Data Component | A collection of discrete values that convey information.

Device Component | A hardware device such as a processor, or chip-set. A hardware
device containing firmware SHOULD include a component for the
physical hardware itself, and another component of type firmware' or
'operating-system' (whichever is relevant), describing information
about the software running on the device.

Device Driver Component | A special type of software that operates or controls a particular type
of device.

File Component | A computer file.

Firmware Component | A special type of software that provides low-level control over a
device's hardware.

Framework Component | A software framework

Library Component | A software library. Many third-party and open source reusable
components are libraries. If the library also has key features of a
framework, then it should be classified as a framework. If not, or is
unknown, then specifying library is RECOMMENDED.

Machine Component | A model based on training data that can make predictions or

Learning Model decisions without being explicitly programmed to do so.

Operating Component | A software operating system without regard to deployment model (i.e.

System installed on physical hardware, virtual machine, image, etc)

Platform Component | A runtime environment which interprets or executes software. This

may include runtimes such as those that execute bytecode or low-
code/no-code application platforms.

19

Description

Service Service A service including microservices, function-as-a-service, and other
types of network or intra-process services.

The component type is a required property for every component. It is an abstract concept to
aid development and security teams with separation of concerns. The types represent the
highest level of abstraction in a modular system or design. They also aid Software Asset
Management (SAM) and IT Asset Management (ITAM) systems in classifying the inventory
of software and constituent parts.

CycloneDX supports multiple methods to assert identity including:

e Coordinates: The combination of the group, name, and version fields form the coordinates of a
component.

e Package-URL: Package-URL (PURL) standardizes how software package metadata is
represented so that packages can universally be identified and located.

e CPE: The Common Platform Enumeration (CPE) specification was designed for operating
systems, applications, and hardware devices. CPE is maintained by the NVD.

e SWID: Software ID (SWID) as defined in ISO/IEC 19770-2:2015 is used primarily to identify
installed software.

e OmniBOR: The OmniBOR Atrtifact ID is capable of identifying every source code file incorporated
into each built artifact.

o SWHID: A Software Heritage ID is a unique identifier assigned to software artifacts to facilitate
their identification, tracking, and preservation.

The following example illustrates component identity in CycloneDX.

"type": "library"”,
"group”: "com.example”,
"name": "awesome-library",
"version": "1.0.0",
"cpe": "cpe:2.3:a:acme:awesome:1.0.0:# k1 k ik ki
"purl": "pkg:maven/com.example/awesome-library@1.0.0",
"omniborld": ["gitoid:blob:shal:261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64"],
"swhid": ["swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2"],
"swid": {
"tagld": "swidgen-242eb18a-503e-ca37-393b-cf156ef09691_1.0.0",
"name": "Acme Awesome Library",
"version": "1.0.0",
"text": {
"contentType": "text/xml",
"encoding": "base64",
"content": "U1dJRCBkb2N1bWVudCBkb2VzIGhlcmU="
b
b
b

20

https://github.com/package-url/purl-spec
https://nvd.nist.gov/products/cpe
https://www.iso.org/standard/65666.html
https://omnibor.io/
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

&) owasp

CycloneDX also supports several identifiers specific to hardware devices. Refer to
https://cyclonedx.org/capabilities/hbom/ for more information.

Assertion of identity can also be substantiated in the form of evidence, which includes the methods and
techniques used during analysis, the confidence, and the tool(s) that performed the analysis. Refer to the
"Evidence" chapter for more information.

CycloneDX is ideal for vulnerability management and impact analysis through the support of
comprehensive inventory and assertions of component identity. With this information, security teams can
identify which components are affected by known vulnerabilities, estimate effort, and quickly prioritize
remediation.

By leveraging CycloneDX in this way, organizations can enhance their software supply chain security and
reduce the risks associated with software vulnerabilities.

Identifying known vulnerabilities in components can be achieved through the use of three
fields: cpe, purl, and swid. Not all fields apply to all types of components. Components with
a cpe, purl, or swid defined can be analyzed for known vulnerabilities.

There are many tools and platforms that support vulnerability management use cases using CycloneDX,
including OWASP Dependency-Track, often cited as a reference implementation for consuming and
analyzing SBOMs. Using a platform such as Dependency-Track, organizations can quickly identify what is
affected and where in their environment they are affected.

Not all sources of vulnerability intelligence support all three fields. The use of multiple
sources may be required to obtain accurate and actionable results.

A Configuration Management Database (CMDB) is a repository that stores information about an
organization's assets, including hardware, software, and other components. Tracking assets in a CMDB
involves collecting and maintaining accurate information about each asset's configuration, location,
status, and relationships with other assets. This information helps organizations manage their assets more
effectively, including monitoring their performance, identifying potential risks, and supporting incident
management.

Software Asset Management (SAM) and IT Asset Management (ITAM) are typical applications that build
upon CMDBs. There are tremendous benefits in capturing BOMs for assets tracked in a CMDB.
Organizations gain a more comprehensive view of their assets, which can help them make more informed
decisions about managing their IT and OT infrastructure. They also benefit from having the broadest array
of possible use cases, including DevOps, vendor risk management, procurement, vulnerability response,
and supply chain management.

CycloneDX complements and meets the requirements of ISO/IEC 19770-1:2017 which defines IT asset
management systems, including license management, security management, and asset lifecycles,
making it uniquely applicable for enterprise adoption.

Integrity verification is the process of ensuring that the software components have not been modified or
tampered with since they were released. This helps to identify unauthorized modifications to software

21

https://cyclonedx.org/capabilities/hbom/
https://dependencytrack.org/
https://www.iso.org/standard/68531.html

&) owasp

components that may introduce security vulnerabilities or cause the software to malfunction. Integrity
verification uses a cryptographic hash function that is used to generate a unique digital fingerprint, or
hash value, for each software component. The hash value can then be compared with the expected hash
value for that component to ensure that it has not been altered.

CycloneDX can be used for integrity verification using cryptographic hashing algorithms. The specification
allows for the inclusion of cryptographic hashes, such as SHA-256, SHA-384, or SHA-512, for each
software component listed in the BOM. By calculating the hash of each file, package, or library and
comparing it with the hash value listed in the BOM, organizations can verify the integrity of the software
and detect unauthorized modifications.

The following example illustrates how to represent hashes on a component.

"components": [

{
"type": "library"”,
"name": "acme-example",
"version": "1.0.0",
"hashes": [{
"alg": "SHA-256",
"content": "d88bc4e70bfb34d18b5542136639acbb26a8ae2429aale47489332fb389cc964"
e
"alg": "BLAKE3",
"content": "26cdc7fb3fd65fc3b621a4ef70Obc7d2489d5¢19e70c7 6¢f7ec20e538df004 7 cf"
1]
b

]
}

In addition, external references (covered later in the "Relationships" chapter) also support hashes. The
following example illustrates how CycloneDX can refer to an external BOM and include the hashes for
that BOM. In doing so, the integrity of the external BOM can be evaluated prior to use.

"components": [
{
"type": "library",
"group”: "com.example”,
"name": "persistence"”,
"version": "5.2.0",
"externalReferences”: [
{
"type": "bom",
"url": "https:/ /example.com/sbom.json",
"hashes": [
{
"alg": "SHA-256",
"content": "9048a24d72d3d4a1a0384f8f925566b44f133dd2a0194111a2daeb1cfof7015b"

CycloneDX supports SHA-1, SHA-2, and SHA-3 hashing algorithms along with BLAKE2b and BLAKES.

By leveraging CycloneDX for integrity verification, organizations can enhance the security and reliability of
their software applications and systems.

22

&) owasp

Authenticity refers to the assurance that a component, or the BOM itself, came from the expected source
and has not been tampered with. Authenticity can be verified through the use of digital signatures and
code-signing certificates, which are issued by trusted certificate authorities. These signatures allow users
to verify the supplier's identity and ensure that the artifact has not been modified since it was signed.

When a BOM is signed, the authenticity and integrity of the BOM can be verified. This verification can
ensure that the data in the BOM has not been altered. Using signed BOMs increases trust and
confidence in a software product, particularly in cases where the product is used in sensitive or critical
applications.

CycloneDX supports enveloped signing, including XML Signature (xmlsig) and JSON Signature Format
(JSF). In addition, detached signatures are also supported.

The following example illustrates the use of enveloped signing using JSF.

"signature": {
"algorithm": "RS512",
"publicKey": {
"kty": "RSA",
"n": "qOSWbDOGS31lv3alUzZVOgqZyLVrKXXRfmxFQxEylc...",
"e": "AQAB"
b
"value": "HGIX_ccdlcgmaOpkxDzKH_jOozSHUAUyBxGpXS..."
b

CycloneDX is ideal for both open-source and commercial license compliance. By leveraging the licensing
capabilities of CycloneDX, organizations can identify any licenses that may be incompatible or require
specific compliance obligations, such as attribution or sharing of source code. CycloneDX supports
declared, observed, and concluded licenses.

CycloneDX can also help organizations manage their commercial software licenses by providing a clear
understanding of what licenses are in use and which ones require renewal or additional purchases, which
may impact the operational aspects of applications or systems. By leveraging CycloneDX for commercial
license compliance, organizations can reduce the risks associated with license violations, enhance their
license management practices, and align their SBOM practice with Software Asset Management (SAM)
and IT Asset Management (ITAM) systems for enterprise visibility.

Solutions supporting the Software Development Life Cycle (SDLC) typically involve open-source license
compliance or intellectual property use cases. Whereas Software Asset Management (SAM) is primarily
concerned with commercial license and procurement use cases. OWASP CycloneDX has extensive
support for both and can be applied to any component or service within a BOM.

Relying on outdated components can have a significant impact on the security, stability, and performance
of the software. Outdated components may have known vulnerabilities that can be exploited by attackers,
leading to data breaches or other security issues. Additionally, newer versions of components may

include bug fixes or performance improvements that can enhance the overall functionality of the software.

Updating components is not a one-time task but a continuous process. New vulnerabilities and bugs are
constantly being discovered, and the latest updates are being released to fix them. Thus, it is crucial to
regularly check for updates and keep components up to date. Ignoring updates and running software with
outdated components can lead to increased time to mitigate vulnerabilities should a previously unknown
vulnerability become known.

23

&) owasp

Identifying end-of-life components can be challenging as the data may be difficult to obtain. However,
some sources of commercial vulnerability intelligence do provide this data, and also help identify up-to-
date components that are otherwise no longer supported.

Provenance refers to the history of the origin and ownership of a component. In the context of a software
supply chain, provenance provides a way to trace the lineage of a component and ensure its authenticity
is in alignment.

Provenance information can help software developers and users identify the source of a component, and
helps to establish trust and accountability among different parties involved in the software supply chain,
such as software vendors, distributors, and consumers.

By maintaining a record of provenance information throughout the software supply chain, organizations
can improve their ability to detect and mitigate security risks, reduce the likelihood of supply chain
attacks, and increase the overall reliability and quality of their software products.

Furthermore, regulatory compliance requirements (such as those related to data privacy, data protection,
and intellectual property) often mandate the use of provenance tracking to ensure compliance with legal
and ethical standards.

CycloneDX supports provenance via four distinct fields: author, publisher, supplier, and manufacturer. In
addition, components that are modified from the original can be described along with the complete
authorship, including commits and the person or account that authored and committed the modifications.

CycloneDX can represent component pedigree, including ancestors, descendants, and variants that
describe component lineage from any viewpoint and the commits, patches, and diffs which make it
unique. The addition of a digital signature applied to a component with detailed pedigree information
serves as an affirmation of the accuracy of the pedigree.

Maintaining accurate pedigree information is especially important with open-source components whose
source code is readily available, modifiable, and redistributable. Identifying changes to a component or a
components coordinates along with information describing the original component, may be necessary for
the analysis of various forms of risk.

Refer to the "Relationships" chapter for detailed information on pedigree.

During the generation and enrichment of a Software Bill of Materials (SBOM), data often evolves as
components are scanned, verified, enriched, or corrected by different tools and processes. The citations
capability in CycloneDX provides a verifiable record of which entities, whether people, organizations, or
automated systems, supplied or modified specific pieces of information within the BOM. For example, an
initial dependency scanner may record component identifiers, while a subsequent analysis tool refines
license metadata or corrects versioning. Each change can be cited, establishing a continuous
provenance chain that shows how and when data was produced or altered. This traceability enables
organizations to understand the origin and reliability of SBOM data, supports validation and auditability
over time, and fosters trust in automated or semi-automated software supply chain processes.

Foreign Ownership, Control, or Influence (FOCI) is a critical concern in the software supply chain that
should be taken seriously by all organizations involved. FOCI refers to the degree to which foreign entities

24

&) owasp

have control or influence over the operations or assets of companies in another government's jurisdiction.
FOCI is a term specific to the U.S., but many world governments have similar concepts.

Indicators that may be relevant in identifying FOCI concerns can be derived from several fields, including
author, publisher, manufacturer, and supplier but can also be extended to other fields such as the
components group name. The CPE may also indicate the vendor and the PURL can identify a potentially
foreign namespace or repository or download URL for the package. Many external references may also
provide a clue, especially those pointing to the version control system (vcs) and commit history, issue
tracker, distribution, and documentation websites.

Commercial sources of supply chain intelligence, including both physical and cyber, are available and can
aid in identifying FOCI and other supply chain risk.

Organizations may use CycloneDX to document components, services, or formulation processes that
incorporate patented technologies. By declaring patents and patent families within the BOM,
organizations can disclose known IP rights associated with each component, such as encryption
algorithms or hardware interfaces covered by registered patents. This enables downstream consumers to
assess potential legal obligations, avoid infringement, and negotiate appropriate licensing terms before
integration or deployment. When combined with CycloneDX’s licensing and declaration structures, patent
transparency supports responsible innovation, informed procurement, and due diligence in global
technology supply chains.

CycloneDX can help organizations achieve export compliance in the software supply chain by providing a
comprehensive inventory of all software components used in a product, including their origin, version, and
licensing. This information can enable organizations to identify potential export control issues, such as
using components developed in foreign countries or containing encryption technology, and take
appropriate measures to ensure compliance.

Export controls can also apply to technologies protected by patents, particularly those involving
encryption, communications, or dual-use capabilities. By declaring patents and patent families within a
CycloneDX BOM, organizations gain visibility into components that may be subject to export restrictions
due to their underlying intellectual property. This includes patented algorithms, protocols, or hardware
designs that fall under national or international control lists. Documenting this information enables
organizations to assess whether additional export licenses or disclosures are required, reducing legal risk
and supporting proactive compliance in global markets.

Purchasing of software and IT assets can be enhanced with bill of materials. Model contract language
that would require BOMs for all new procurements and renewals of deployable software and any IT asset
containing software should be considered. Sourcing may then strategically favor vendors who provide
BOMs or further negotiate costs with vendors that don't. Procurement processes can be enhanced to
request BOMs from vendors, which may then be consumed by the procurement system and shared with
enterprise Software Asset Management (SAM) or IT Asset Management (ITAM) systems. Automating
BOM requests, retrieval, consumption, and sharing across systems should be considered for
organizations on a quest for digital transformation.

A Vendor Risk Assessment (VRA) is a process used to identify and evaluate potential risks or hazards
associated with a vendor's operations and products and their potential impact on an organization. VRA is
part of an overall Vendor Risk Management process. VRAs are often an integrated part of the

25

&) owasp

procurement process for new vendors. VRAs may also be triggered periodically for existing vendors. VRA
processes can be enhanced through the use of BOMs. With BOMs, not only can the supplier of the
software or asset can be evaluated, but every supplier of the constituent components that make up the
software or asset can be evaluated. Additionally, the report from a VRA can be specified in CycloneDX
using the risk-assessment external reference type. The transparency that CycloneDX BOMs provide can
result in more impactful assessments and significant risk reduction.

Supply chain management is a strategic discipline that encompasses the coordinated planning,
implementation, and control of the flow of goods, services, and information from the point of origin to the
point of consumption. It involves a systematic approach to optimizing every aspect of the supply chain.

Dr. W. Edwards Deming, a renowned quality management expert, emphasized the importance of
collaboration, data-driven decision-making, and a relentless pursuit of excellence throughout the entire
supply chain. Deming believed that by focusing on quality and process improvement, organizations can
achieve higher levels of customer satisfaction and long-term success.

Deming's supply chain management strategy included using fewer and better suppliers, utilizing the best
quality components from those suppliers, and tracking component usage across the entire supply chain.
By focusing on fewer suppliers, organizations can reduce variability and drive efficiency. Deming
emphasized the importance of selecting suppliers who consistently deliver top-quality components, which
improves the overall quality of products or services. Additionally, tracking component usage across the
supply chain allows organizations to identify inefficiencies, optimize processes, and eliminate waste.

Supply chain management of physical goods shares several similarities with software supply chain
management. Both disciplines involve sourcing, production, distribution, and inventory management to
ensure the smooth flow of goods or software throughout the supply chain. Just as physical goods move
from suppliers to manufacturers to end-users, software components are sourced, developed, and
integrated to create a final software product. While there are differences in the nature of the products
being managed, the core principles of efficient sourcing, production, and distribution are applicable to
physical goods and software.

CycloneDX BOMs play a crucial role in supply chain management as they enhance collaboration and
enable effective supply chain management and governance of software components from sourcing to
deployment.

The inventory of components, services, and their relationships to one another can be described through
the use of compositions. Compositions describe constituent parts (including components, services, and
dependency relationships) and their completeness. The completeness of vulnerabilities expressed in a
BOM may also be described. This allows BOM authors to describe how complete the BOM is or if there
are components in the BOM where completeness is unknown.

CycloneDX supports modeling external components using the isExternal property, which indicates that
the component is expected to be provided by the runtime environment rather than bundled with the
product. When isExternal is set to true, a versionRange may be specified to describe acceptable versions
rather than a single fixed version. This is useful for representing flexible dependencies on external
libraries, runtimes, or platforms. However, to preserve clarity and consistency, versionRange must not be
used if isExternal is false, and it must not appear alongside the version property. Only one may be
present. These constraints ensure accurate interpretation of component identity

during deployment and analysis.

The following example illustrates the reliance on libcurl, provided externally:

26

"components": [

{
"bom-ref": "libcurl",
"type": "library"”,
"name": "libcurl",

"versionRange": "vers:generic/>=8.7.1|<9.0.0",
"description”: "libcurl ~8.7.1",
"isExternal": true

CycloneDX can describe declared and observed formulations for reproducibility throughout the product
lifecycle of components and services. This advanced capability provides transparency into how
components were made, how a model was trained, or how a service was created or deployed. Generally,
the formulation is externalized from the SBOM into a dedicated Manufacturing Bill of Material (MBOM).
The SBOM references the MBOM that describes the environment, configuration, tools, and all other
considerations necessary to replicate a build with utmost precision. This capability allows other parties to
independently verify inputs and outputs from a build which can increase the software's assurance.

CycloneDX can describe a comprehensive inventory of cryptographic assets, encompassing keys,
certificates, tokens, and more. This is a requirement of the OMB M-23-02, where such a system is
characterized as a [...”software or hardware implementation of one or more cryptographic algorithms that
provide one or more of the following services: (1) creation and exchange of encryption keys; (2)
encrypted connections; or (3) creation and validation of digital signatures.”]

CycloneDX provides a structured framework for organizations to catalog and track their cryptographic
resources, facilitating efficient management and ensuring security and compliance standards are met. By
maintaining a detailed record of cryptographic assets, including their usage, expiration dates, and
associated metadata, CycloneDX enables proactive monitoring and streamlined auditing processes. With
CycloneDX, organizations can effectively safeguard their cryptographic infrastructure, mitigate risks
associated with unauthorized access or misuse, and maintain the integrity and confidentiality of sensitive
data across diverse digital environments.

CycloneDX enables organizations to discover weak algorithms or flawed implementations that could
compromise security. Through analysis of cryptographic data, including algorithms, key management
practices, and usage patterns, organizations can pinpoint areas of concern and prioritize remediation
efforts. CycloneDX facilitates proactive identification of weaknesses and vulnerabilities, allowing
organizations to enhance the resilience of their cryptographic infrastructure and mitigate the risk of
exploitation, thereby bolstering overall cybersecurity posture and safeguarding sensitive data against
potential threats.

CycloneDX is crucial in preparing applications and systems for an impending post-quantum reality,
aligning with guidance from the National Security Agency (NSA) and the National Institute of Standards
and Technology (NIST). As quantum computing advancements threaten the security of current
cryptographic standards, CycloneDX provides a structured approach to inventorying cryptographic
assets and evaluating their resilience against quantum threats.

27

https://www.whitehouse.gov/wp-content/uploads/2022/11/M-23-02-M-Memo-on-Migrating-to-Post-Quantum-Cryptography.pdf

&) owasp

Most notably, public key algorithms like RSA, DH, ECDH, DSA or ECDSA are considered not quantum-
safe. These algorithms occur in various components and may be hardcoded in applications but are more
commonly and preferably used via dedicated cryptographic libraries or services. Developers often don'’t
directly interact with cryptographic algorithms such as RSA or ECDH but use them via protocols like TLS
1.3 or IPsec, by using certificates, keys, or other tokens. With upcoming cryptographic agility it becomes
less common to put in stone (or software) the algorithms that will be used. Instead, they are configured
during deployment or negotiated in each network protocol session. CycloneDX is designed with these
considerations in mind and to allow insight into the classical and quantum security level of cryptographic
assets and their dependencies.

By cataloging cryptographic algorithms and their respective parameters, CycloneDX enables
organizations to identify vulnerable or weak components that require mitigation or replacement with
quantum-resistant alternatives recommended by NSA and NIST. Through comprehensive analysis and
strategic planning facilitated by CycloneDX, organizations can proactively transition to post-quantum
cryptographic primitives, ensuring the long-term security and integrity of their systems and applications.

A cryptographic inventory in machine-readable form brings benefits if one wants to check for compliance
with cryptographic policies and advisories. An example of such an advisory is CNSA 2.0, which was
announced by NSA in September of 2022. CNSA 2.0 states, among other things, that National Security
Systems (NSS) for firmware and software signing needs to support and prefer CNSA 2.0 algorithms by
2025 and exclusively use them by 2030. The advised algorithms are the stateful hash-based signature
schemes LMS and XMSS from NIST SP 800-208. With a cryptographic inventory that documents the use
of LMS and XMSS by such systems, compliance with CNSA 2.0 can be assessed in an automated way.

CycloneDX significantly enhances the ability to identify and manage the risks associated with expiring and
long-term cryptographic material. For instance, an RSA certificate set to expire in one week inherently
presents a lower cryptographic risk compared to an identical certificate with a 20-year expiry period. This
consideration is crucial, as an expired certificate can lead to significant service downtime, compounding
the risk to operational security and reliability.

Higher cryptographic assurance is provided by certifications such as FIPS 140-3 (levels 1 to 4) or
Common Criteria (EAL1 to 7). To obtain these certifications, cryptographic modules need to undergo
certification processes. For regulated environments such as FedRAMP, such certifications are important
requirements. CycloneDX allows the capture of certification levels of cryptographic assets so that this
property can be easily identified.

28

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
https://csrc.nist.gov/pubs/fips/140-3/final
https://www.commoncriteriaportal.org/

BOM Coverage, Maturity, and Quality

NTIA Minimum Elements

) owasp

The U.S. National Telecommunications and Information Administration (NTIA) defines the following

minimum elements of an SBOM. They are:

Field CycloneDX Field Description
Supplier bom.metadata.supplier, The name of an entity that creates,
bom.components[].supplier defines, and identifies components.

Component bom.components[].name Designation assigned to a unit of software

Name defined by the original supplier.

Component bom.components[].version Identifier used by the supplier to specify a

Version change in software from a previously
identified version.

Other Unique bom.components[].cpe,purl,swid Other identifiers that are used to identify a

Identifiers component, or serve as a look-up key for
relevant databases.

Dependency bom.dependencies[] Characterizing the relationship that an

Relationship upstream component X is included in
software Y.

Author of SBOM | bom.metadata.author The name of the entity that creates the

Data SBOM data for this component.

Timestamp bom.metadata.timestamp Record of the date and time of the SBOM

data assembly.

CycloneDX highly encourages organizations to exceed the NTIA minimum elements whenever possible.
Suggestions for other types of data will vary by use case but generally should include:

Field

BOM Lifecycles

‘ CycloneDX Field

bom.metadata.lifecycles[]

Description

The stage in which data in the BOM was
captured

BOM bom.metadata.tools[] The tool(s) used to create the BOM
Generation

Tools

Component bom.components[].hashes[] The hash values of the file or package
Hash

29

https://ntia.gov/
https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

&) ownsp

Field CycloneDX Field Description

Component bom.components[].licenses|] The license(s) in which the component
License is released under

Component bom.components[].evidence[].identity.* | The evidence of identity including the
Evidence methods, techniques, and confidence of

how components were identified

Cryptographic bom.components[].cryptoProperties.* The properties specific to cryptographic

Properties assets detailing the algorithms, keys,
protocols, and other cryptographic
material

External bom.components[].externalReferences[] | Locations to advisories, version control

References and build systems, etc

Services bom.services[].* A complete inventory of services

including endpoint URLs, data
classifications, etc which the product
and/or individual components rely on

Known bom.compositions[].” Assertions on the completeness of the
Unknowns inventory of components and services,
along with the completeness of
dependency relationships

SCVS BOM Maturity Model

The OWASP Software Component Verification Standard (SCVS) is a way for organizations to measure
and improve their software supply chain assurance. SCVS is required in NIST SP 800-218 (SSDF v1.1)
and similar frameworks.

In addition to the supply chain controls it recommends, SCVS also has a complementary BOM Maturity
Model which allows bill of materials to be evaluated. The model consists of:

o aformal taxonomy of different types of data possible in a bill of materials, independent of BOM
format

e aunique identifier, description, and other metadata about each item in the taxonomy
o the level of complexity or difficulty in supporting different types of data
The model can be used to evaluate:

e Incoming BOMs adherance to organizational policy by supporting the data required by various
stakeholders

e BOM generation and consumption tools

e Current and future BOM formats against each other and their alignment with organizational
requirements

Combined with the ability to create profiles, SCVS will facilitate:

30

https://scvs.owasp.org/
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://scvs.owasp.org/bom-maturity-model/
https://scvs.owasp.org/bom-maturity-model/

) ownsp

e The creation of a new breed of tools (SBOM Profilers) which evaluate BOMs against various
profiles so that end users may know what types of analysis can be performed on them

e The adoption of organizational policy, defined in profiles, for what is acceptable and not
acceptable for various use cases

SBOM Quality

SBOMs can be analyzed for their overall usefulness for given use cases. The "quality" of an SBOM may
differ depending on the stakeholder role and type of analysis required for that role. Quality is a
multidimensional construct and not a single characteristic. OWASP supports a holistic view of quality. The
following illustrates an example of dimensions to consider in determining quality.

Breadth

Confidence Depth [Observed quality
[Quality goal or gate
Techniques Lifecycles
Dimension ’ Support ’ Description
Breadth SCVS The coverage in the types of data represented within a BOM.
Depth SCVS The amount of detail or difficulty needed to represent data within a BOM.

Lifecycles CycloneDX | The number of lifecycles or the favorability of specific lifecycles in the
creation of a BOM.

Techniques | CycloneDX | The approaches used to determine component identity.

Confidence | CycloneDX | The confidence of individual techniques, and the analysis of the sum of all
techniques used to identity components.

The OWASP SCVS BOM Maturity Model is a formal taxonomy of different types of data possible in a Bill
of Materials along with the level of complexity or difficulty in supporting different types of data. The BOM
Maturity Model can be used as the basis for the Breadth and Depth dimensions.

Lifecycles are supported in CycloneDX. Refer to the "Lifecycle Phases" chapter for more information.
Evidence is also a capability of CycloneDX. Identity evidence consists of:

e The field for which the evidence describes (name, version, purl, etc)

e The overall confidence derived from all supporting evidence

31

https://scvs.owasp.org/bom-maturity-model/

&) owasp

¢ The methods which include the techniques used to determine component identity and the
confidence of each technique

e The tools used which performed the analysis

Together, the BOM Maturity Model and native features of CycloneDX can be leveraged to form a high-
quality, high-confidence assessment of SBOM quality.

32

&) owasp

Generating CycloneDX BOMs

There are many ways to generate BOMs, each method having various trade-offs. CycloneDX
recommends organizations establish a process around BOM generation that aligns with the needs of the
business and that of the BOM consumer. In practice, BOM generation is a process, not a one-time event.
As organizations mature their BOM efforts and consumers expect increased accuracy and expanded
data, having an established process that can accommodate multiple generation methods and the ability
to augment and correct BOM data throughout the generation process will provide strategic advantages.

The following process is the path most traveled by organizations that first adopt SBOMs. This process
starts with SBOM generation, which is often performed during the build process, followed by consumption
and analysis of the SBOM. Simultaneously, the SBOM is often published alongside the artifacts that result
from the build process.

EEDEZENETE

For some organizations, the process above is where their journey ends. However, for many other
organizations, it's just the start. OWASP recommends that SBOM creation become an integrated and
repeatable process aiming to achieve accurate and trustworthy results. The following is an example
workflow that illustrates SBOM creation, verification, and enrichment using multiple tools and techniques.

BUILD POST BUILD

The benefits of this approach are numerous. It starts with SBOM generation in the build lifecycle. This
typically involves a plugin specific to the build tool used, which often generates the most accurate and
complete set of initial results. Build plugins often rely on manifests that can be manipulated or, in the case
of unmanaged dependencies, may not include all dependent components.

The verification stage may involve specialized tools that perform different types of analysis against the
build artifacts and compare the findings to the results in the SBOM. If there are deltas, then the resulting
SBOM may need to be corrected.

One common scenario where correction often occurs is with modified or forked components. Manifest
and binary analysis typically falls short in properly identifying modified components. Tools may identify the
component as being modified or the upstream version but generally cannot distinguish what the
modifications were, who made them, or for what purpose. Open source is the ultimate supply chain.
Components can and will be modified. Often these modifications are to add new features or to backport
security fixes. Describing these modifications in the SBOM greatly increases its accuracy and the
perceived trustworthiness of the SBOM and the vendor who provided it. Tracking modifications is referred
to as "pedigree" and is covered later in the "Relationships" chapter.

33

&) ownsp

As the SBOM process evolves, it may become an integrated part of building software. One vision of this
type of process comes from DJ Schleen who proposed the following reference architecture:

"SBOM Process" © 2023 DJ Schleen

The content in this architecture is beyond the scope of this guide, but is provided to illustrate what is
possible using freely available open source tools.

Approaches to Generating CycloneDX SBOMs

There are many approaches to generating SBOMs. Each has its strengths, but all provide value in an
SBOM process. Common approaches are listed below along with the lifecycles they could be executed
in.

Approach ‘ Lifecycles ’ Description
Build Plugin Build Specialized tool that integrates directly into native build systems
Software Pre Build, Build, | An approach whereby the system that orchestrates builds directly
Factory Post Build generates SBOMs
SCA Pre Build, Build, | Software Composition Analysis, which may inspect manifests in
Post Build version control pre-build, be integrated into builds, or perform
analysis of built artifacts post-build
IAST/RASP Post Build, Specialized tool that often involves instrumentation against running
Operations systems

Each approach may use multiple methods and techniques to identify components and other relevant
data. The techniques used, the confidence, and call stack reachability can all be described granularly at
the component level in CycloneDX. Refer to the "Evidence" chapter for more information.

34

&) owasp

SBOMs may describe individual source files and other digital assets in a directory or version control
system. These types of SBOMs typically include file components, file hashes, and evidence of license and
copyright statements. The primary purpose of this type of BOM is for license compliance and intellectual
property use cases. They may also be used as an OpenChain Compliance Artifact. Oftentimes, license
attribution reports can be derived from source SBOMs. Generating SBOMs from source files typically
occur in the "pre build" lifecycle.

Integrating SBOM generation into the software's build system is the preferred starting point for producing
SBOM s for cybersecurity use cases. Modern build systems rely on package manifests which describe the
intent to use specific dependencies. Examples of manifests include pom.xml (Java/Maven), package-
lock.json (Javascript/npm), and requirements.txt (Python).

There are three primary strategies for producing SBOMs during a build.

e Integration into build lifecycle
¢ Analyzing build artifacts external to lifecycle

e Software factory

Many build systems have a "lifecycle" that can affect dependency resolution. These lifecycles are often
configurable by the developers and can profoundly affect component inventory and versions. For
example, Maven resolves dependencies as it progresses through its lifecycle. A Maven build may also
include optional profiles, which can alter what dependencies are included or excluded from the final
deliverable. Analyzing pom.xml outside of Mavens' lifecycle will typically lead to erroneous results. On the
Javascript front, many plugins to npm or web frameworks can dramatically affect component inventory.
For example, many web frontends are optimized using a process called bundling which removes unused
dependencies and/or functions through a process called "tree-shaking" and aggregates the Javascript
into highly optimized bundles for efficient delivery to web and mobile browsers. In these scenarios, relying
on package-lock.json as the source of truth would lead to an erroneous SBOM containing an inventory of
components that are not distributed in the final artifact. In the case of software vendors, it is important
only to include the components that are distributed with the final software. Not doing so may lead to
increased and unnecessary support costs.

Integrating into individual builds, especially a build's lifecycle, has many advantages but generally takes
more effort. Another approach is to target the generation at the software factories themselves. Software
factories often comprise Continuous Integration and Continuous Delivery (CI/CD) systems. Organizations
may customize their CI/CD environment to optimize software delivery and increase the efficiency of
onboarding new software projects. A strategic option for many organizations is to reduce the effort
necessary to create SBOMs by automating as much as possible. Once configured, generating SBOMs
from software factories allows organizations to produce SBOMs for many software projects with little to
no effort. GitHub Actions, GitLab Runners, Jenkins libraries, and Circle Cl orbs are often used as the
foundation for many software factories. While this approach can quickly scale across an organization, the
accuracy of the SBOMs may be impacted as the software factories orchestrate the build tools; they are
not directly part of the build systems lifecycle.

35

&) owasp

Analyzing source files or build manifests has some limitations. They do not capture the environment in
which the software is being run, the system dependencies that are used, which are not specified in the
source files or manifests, and will be limited to the inventory of software components. Generating SBOMs
at runtime is often achieved through observability or instrumentation. Examples of platforms capable of
runtime generation include:

e Interactive Application Security Testing (IAST)
e Mobile Application Security Testing (MAST)
Generating SBOMs at runtime has many benefits including:
e Capturing the dependencies that are invoked and those which are not
e Capturing system dependencies of the underlying platform or operating system
e Capturing information and configuration about the runtime environment
e Capturing the use and reliance on external services such as those provided via HTTP and MQTT

The platforms capable of runtime generation are often used as part of the software's testing phase and
orchestrated by Cl systems. In addition, many IAST platforms also double as RASP (Runtime Application
Security Protection) and can proactively mitigate specific types of attacks automatically.

Oftentimes, especially for legacy software, the source or build files may not be available, and runtime
instrumentation may not be possible. In these cases, analyzing the binary artifacts may be necessary.
These same approaches may also be used by security firms specializing in firmware forensics associated
with medical, loT, and other types of devices.

Refer to the "Evidence" chapter for more information.

CycloneDX evolved in the era of DevSecOps and has a strong focus on being highly automatable. Most
CycloneDX tools are also focused on automation. However, some ecosystems such as C/C++ continue to
mostly rely on unmanaged dependencies despite the availability of package managers. In these
situations, manually managing dependencies often requires manual SBOM generation. Several tools exist
to accomplish this task including OWASP Dependency-Track.

Accurate attribution is essential for establishing trust, ensuring data provenance, and enabling traceability
across the software supply chain. The citations capability in CycloneDX provides a structured mechanism
to reference the origin of specific data within a BOM. Whether information is generated by automated
tools, verified by individuals, or updated during the lifecycle of the BOM, citations allow stakeholders to
identify who or what contributed each piece of data. This improves auditability, supports compliance
verification, and enhances confidence in both manual and automated SBOM generation processes.

CycloneDX citations support two methods for referencing the location of attributed data within a BOM:
JSON Pointers and JSONPath expressions. JSON Pointers provide an exact, location-specific reference,
while JSONPath expressions allow more flexible, query-like targeting across the document structure. This
enables citations to precisely or dynamically associate attributions with individual fields or sets of data.
Additionally, the optional process field allows organizations to reference a declared workflow task,

36

https://dependencytrack.org/
https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/rfc9535

&) ownsp

providing context for how the cited data was generated, whether by automated scanning, manual entry,
or a hybrid method. Combined with the attributedTo field, this enables rich provenance chains that
document not only who contributed data, but how and when it was produced.

"citations": [
{
"bom-ref": "citation-1",
"pointers": ["/components/0/name"],
"timestamp”: "2025-05-01T14:00:00Z",
"attributedTo": "person-1",
"note”: "Manually entered by Alice Example - with “attributedTo™"

"bom-ref": "citation-2",

"expressions”: ["$..[? (@.bom-ref= ="component-1')].version"],

"timestamp”: "2025-05-01T14:00:00Z",

"process”: "task-license-scan"”,

"note": "Documents the formulation process, not the specific tool within that process."

"bom-ref": "citation-3",

"expressions": ["$.components[*].licenses[#].license.id"],
"timestamp”: "2025-05-01T14:05:00Z",

"attributedTo": "scan-tool-1",

"process”: "task-license-scan",

"note": "Documents both the process and the tool used within a process."

Distribution Constraints and Traffic Light Protocol

Communicating sharing restrictions is essential to maintaining legal compliance, operational security, and
confidentiality. The distributionConstraints object in CycloneDX allows organizations to specify conditions
under which the BOM or its components may be distributed. This includes support for established
classification models such as the Traffic Light Protocol (TLP), which governs information sharing based
on sensitivity and audience. By encoding distribution constraints directly into the BOM, producers can
communicate clear handling guidelines to recipients, reducing the risk of data leakage, regulatory
violations, or unintended disclosures across the supply chain.

Label ‘ Description
CLEAR The information is not subject to any restrictions as regards the sharing.
GREEN The information is subject to limited disclosure, and recipients can share it

within their community but not via publicly accessible channels.

AMBER The information is subject to limited disclosure, and recipients can only share
it on a need-to-know basis within their organization and with clients.

AMBER_AND_STRICT | The information is subject to limited disclosure, and recipients can only share
it on a need-to-know basis within their organization.

RED The information is subject to restricted distribution to individual recipients only
and must not be shared.

37

https://www.first.org/tlp/

&) owasp

Consuming CycloneDX BOMs can be done efficiently using various tools specifically designed to ingest
and analyze BOMs. In general, there are three classifications of tools. They are:

Enterprise Platforms
BOM Platforms
BOM Tools

1. BOM Tools: This classification of tool is generally small, purpose-built, and often a command-line
utility. These types of tools generally focus on vulnerability scanning, license compliance, or
dependency analysis. While there are many tools that provide this functionality, a few honorable
open source mentions are Bomber, dep-scan, Grype, and Trivy. All these tools can accept
CycloneDX BOMs as input and analyze them for known security risk.

2. BOM Platforms: These higher complexity tools offer robust and collaborative features and are
generally purpose-built for BOM consumption. They typically consume BOMs from CI/CD
pipelines or external systems, such as procurement. Notable open source projects in this
category are GUAC, a supply chain intelligence platform, and OWASP Dependency-Track, a
reference platform for BOM consumption and analysis.

3. Enterprise Platforms: Often times these are large CMDB's or similar systems that provide a wide-
range of IT, procurement, and business applications. These platforms are typically more general-
purpose, capable of a wide range of use cases, including SBOM consumption.

For a list of known tools that support the CycloneDX standard, visit the CycloneDX Tool Center.

38

https://github.com/devops-kung-fu/bomber
https://github.com/AppThreat/dep-scan
https://github.com/anchore/grype
https://trivy.dev/
https://guac.sh/
https://dependencytrack.org/
https://cyclonedx.org/tool-center/

&) ownsp

Leveraging Data Components

Data components provide the ability to inventory data as part of a bill of material. This specialized type of
component benefits from all the other capabilities that CycloneDX provides, including tracking the
provenance and pedigree of data.

A data "type" describes the general theme or subject matter of the data being specified. The following are
supported types:

Type

configuration | Parameters or settings that may be used by other components.

Description

dataset

A collection of data.

definition Data that can be used to create new instances of what the definition defines.

source-code | Any type of code, code snippet, or data-as-code.

other

Any other type of data that does not fit into existing definitions.

To help visualize a typical scenario, let's describe an application with a few different data components that
represent custom source code and configurations bundled in an application.

Component: Acme Application

Component: Shutdown Hook

‘ Data: Source Code]

Component: Server Configuration

[Data: Configuration ’

Component: Environmental Variables

[Data: Configuration ’

Other possible scenarios include:

Inclusion of all source code that makes up a component.
Inclusion of inline datasets bundled with a component.
Externalizing the data components using an External Reference of type 'bom'.

Leveraging CycloneDX lifecycles and External References to create an Operations Bill of
Materials (OBOM) linking the SBOM of the application, the HBOM of the hardware it's running
on, and describing the runtime configuration of the system in the OBOM.

39

&) owasp

This example, similar to the previous illustration, involves Acme Application which includes the Javascript
source code for a shutdown hook. In this case, both are from different suppliers.

"components": [
{

"bom-ref": "acme-application”,

"type": "application”,

"name": "Acme Application”,

"version": "1.0.0",

"supplier": { "name": "Acme Inc" },

"components”: [

{

"type": "data”,
"name": "Shutdown Hook",
"supplier": { "name": "Example Company" },

"data": [
{
"type": "source-code”,
"contents": {

"attachment™: {
"contentType": "text/javascript”,
"encoding”: "base64",
"content”: "Y29uc29sZS5sb2coJOdvb2RCeWUnKQ=="

CycloneDX does not attempt to normalize configurations into a common vocabulary. Systems and
applications may have specialized ways of representing configurations that are specific to them. Rather,
CycloneDX leverages existing support for name/value pairs (properties), attachments, and URLs to
external resources. With this approach, common and specialized configuration mechanisms are
supported. Consumers of BOMs with data components will need to understand the context and
semantics of the data specified.

40

&) owasp

CycloneDX can describe cryptographic assets and their dependencies. Discovering, managing, and
reporting on cryptographic assets is necessary as the first step on the migration journey to quantum-safe
systems and applications. Cryptography is typically buried deep within components that are used to
compose and build systems and applications.

Advances in quantum computing introduce the risk of previously-secure cryptographic algorithms
becoming compromised faster than ever before. In May of 2022, the White House released a National
Security Memorandum outlining the government’s plan to secure critical systems against potential
qguantum threats. This memorandum contains two key takeaways for both agency and commercial
software providers: document the potential impact of a breach, and have an alternative cryptography
solution ready.

As cryptographic systems evolve from using classical primitives to quantum-safe primitives, there is
expected to be more widespread use of cryptographic agility, or the ability to quickly switch between
multiple cryptographic primitives. Cryptographic agility serves as a security measure or incident response
mechanism when a system’s cryptographic primitive is discovered to be vulnerable or no longer complies
with policies and regulations.

As part of an agile cryptographic approach, organizations should seek to understand what cryptographic
assets they are using and facilitate the assessment of the risk posture to provide a starting point for
mitigation.

The following is a high-level architecture illustrating how cryptographic assets are implemented in
CycloneDX.

Component (type = cryptographic-asset)

Crypto Properties

Algorithm Properties

Certificate Properties

Protocol Properties

Related Crypto Materials Properties

Public Key Key Salt Credential Password Ciphertext
Private Key Digest Shared Secret Token Signature Seed
Secret Key 'nit\izigtg‘rion Tag Additional Data Nonce Other

Organizations should consider including cryptographic assets in their SBOMs and optionally producing a
BOM specific for cryptographic material, otherwise known as a Cryptographic Bill of Material (CBOM).

Refer to the Authoritative Guide to CBOM for in-depth information about leveraging CycloneDX for
cryptographic use cases.

41

https://www.whitehouse.gov/briefing-room/statements-releases/2022/05/04/national-security-memorandum-on-promoting-united-states-leadership-in-quantum-computing-while-mitigating-risks-to-vulnerable-cryptographic-systems/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/05/04/national-security-memorandum-on-promoting-united-states-leadership-in-quantum-computing-while-mitigating-risks-to-vulnerable-cryptographic-systems/
https://cyclonedx.org/guides/

&) ownsp

A cryptographic algorithm is added in the components array of the BOM. The examples below list the
algorithm AES-128-GCM.

Algorithm Example

"components": [
{
"type": "cryptographic-asset”,
"name": "AES-128-GCM",
"cryptoProperties”: {
"assetType": "algorithm",
"algorithmProperties": {
"primitive": "ae",
"parameterSetldentifier”: "128",
"mode": "gcm”,
"executionEnvironment": "software-plain-ram",
"implementationPlatform": "x86_64",
"certificationLevel": ["none"],
"cryptoFunctions”: ["keygen", "encrypt”, "decrypt”, "tag" 1,
"classicalSecurityLevel": 128,
"nistQuantumSecurityLevel": 1
I
"oid": "2.16.840.1.101.3.4.1.6"
b

42

&) ownsp

License Compliance

CycloneDX facilitates open-source and commercial license compliance. By leveraging the licensing
capabilities of CycloneDX, organizations can identify any licenses that may be incompatible or require
specific compliance obligations, such as attribution or sharing of source code.

Open Source Licensing

The following is an example of a components license. CycloneDX communicates this information using
the SPDX license IDs along with optionally including a Base64 encoded representation of the full license
text.

"licenses": [
{
"license": {
"id": "Apache-2.0",
"acknowledgement”: "declared",
"text": {
"contentType": "text/plain”,
"encoding": "base64”,
"content”: "RW5jb2RIZCBsaWNIbnNIIHRIeHQgZ29IcyBoZXJILg=="
h
"url": "https:/ /www.apache.org/licenses/LICENSE-2.0.txt"
b
b
1

SPDX license expressions are also fully supported.

"licenses™: [
{
"expression”: "(LGPL-2.1 OR BSD-3-Clause AND MIT)",
"acknowledgement": "declared"
b
1

Declared and Concluded Licenses

Declared licenses and concluded licenses represent two different stages in the licensing process within
software development. Declared licenses refer to the initial intention of the software authors regarding the
licensing terms under which their code is released. On the other hand, concluded licenses are the result
of a comprehensive analysis of the project's codebase to identify and confirm the actual licenses of the
components used, which may differ from the initially declared licenses. While declared licenses provide
an upfront indication of the licensing intentions, concluded licenses offer a more thorough understanding
of the actual licensing within a project, facilitating proper compliance and risk management.

Acknowledgement | Description

declared Declared licenses represent the initial intentions of authors regarding the licensing
terms of their code.

concluded Concluded licenses are verified and confirmed.

43

&) owasp

Using Evidence To Substantiate Concluded Licenses and Track Copyrights

In addition to asserting the declared or concluded license(s) of a component, CycloneDX also supports
evidence of other licenses and copyrights found in a given component. These licenses are "observed" in
the course of analyzing a software project and form the necessary evidence to substantiate a "concluded"
license. For example:

"evidence": {
"licenses": [
{ "license": { "id": "Apache-2.0" } },
{ "license": { "id": "LGPL-2.1-only" } }
1
"copyright": [
{ "text": "Copyright 2012 Acme Inc. All Rights Reserved." },
{ "text": "Copyright (C) 2004,2005 University of Example” }
1
Y

Refer to the "Evidence" chapter for more information.

Commercial Licensing

CycloneDX can also help organizations manage their commercial software licenses by providing a clear
understanding of what licenses are in use and which ones require renewal or additional purchases, which
may impact the operational aspects of applications or systems. By leveraging CycloneDX for commercial
license compliance, organizations can reduce the risks associated with license violations, enhance their
license management practices, and align their SBOM practice with Software Asset Management (SAM)
and IT Asset Management (ITAM) systems for enterprise visibility.

The following example illustrates a commercial license for a given component.

"licenses": [
"license": {
"name": "Acme Commercial License",
"licensing": {
"licensor": {
"organization": { "name": "Acme Inc" }
"licensee": {
"organization": { "name": "Example Co." }

’

"purchaser": {

"individual": {
"name": "Samantha Wright",
"email": "samantha.wright@gmail.com",
"phone": "800-555-1212"

b

’

"purchaseOrder": "PO-12345",

"licenseTypes": ["appliance"],

"lastRenewal": "2022-04-13T20:20:39+00:00",
"expiration": "2023-04-13T20:20:39+00:00"

44

&) ownsp

All commercial license fields are optional. The licensor, licensee, and purchaser may be an organization
or individual. Multiple license types may be specified and include:

License Type ‘Description

academic

A license that grants use of software solely for the purpose of education or research.

appliance

A license covering use of software embedded in a specific piece of hardware.

client-access

A Client Access License (CAL) allows client computers to access services provided
by server software.

concurrent- A Concurrent User license (aka floating license) limits the number of licenses for a
user software application and licenses are shared among a larger number of users.
core-points A license where the core of a computer's processor is assigned a specific number of

points.

custom-metric

A license for which consumption is measured by non-standard metrics.

device A license that covers a defined number of installations on computers and other types
of devices.

evaluation A license that grants permission to install and use software for trial purposes.

named-user A license that grants access to the software to one or more pre-defined users.

node-locked A license that grants access to the software on one or more pre-defined computers or
devices.

oem An Original Equipment Manufacturer license that is delivered with hardware, cannot
be transferred to other hardware, and is valid for the life of the hardware.

perpetual A license where the software is sold on a one-time basis and the licensee can use a
copy of the software indefinitely.

processor- A license where each installation consumes points per processor.

points

subscription A license where the licensee pays a fee to use the software or service.

user A license that grants access to the software or service by a specified number of
users.

other Another license type.

Solutions supporting the Software Development Life Cycle (SDLC) typically involve open-source license
compliance or intellectual property use cases. Whereas Software Asset Management (SAM) is primarily
concerned with commercial license and procurement use cases. OWASP CycloneDX has extensive
support for both and can be applied to any component or service within a BOM.

45

&) owasp

When a commercial software license expires or the software has reached its licensed limits, a cascading
series of events may occur, leading to security and quality issues, posing significant risks to users and
systems. One of the immediate concerns is the denial of service, where the software ceases to function. If
the software is part of a larger system, the entirety of the system may be at risk. Moreover, expired or
exceeded licenses may trigger altered application behavior, as certain features or functionalities tied to
the license may become disabled or restricted. This alteration can introduce instability, unexpected
errors, or even malicious behavior, potentially compromising the integrity and confidentiality of data.

Expired licenses may lead to being abruptly cut off from essential updates, patches, and support
channels provided by the software vendor. This leaves systems vulnerable to newly discovered
vulnerabilities and exploits, as security patches may no longer be available. Without access to ongoing
support, users are left without recourse in the event of technical glitches or critical issues, leading to
prolonged downtime and increased susceptibility to cyberattacks. Thus, ensuring software licenses
remain current is vital for maintaining both the security and quality of software systems.

Providing commercial license information in CycloneDX BOMs offers a comprehensive solution to these
challenges. By including license details within BOMs, software consumers gain transparency into the
licensing status of components used within a software application. This transparency facilitates effective
license management, enabling organizations to track and monitor license expiration dates and renewal
requirements. Consequently, software consumers can proactively address license expirations, ensuring
uninterrupted access to critical support services, including software updates and security patches.
Overall, integrating commercial license information into CycloneDX BOMs enhances security, quality, and
compliance across the software supply chain.

46

&) owasp

Intellectual property (IP) plays a critical role in the supply chain. As products increasingly incorporate
patented technologies, organizations require a structured, verifiable way to identify and declare those
patents. CycloneDX provides a framework for representing patents and related assertions across
software, hardware, services, and operational workflows. Developed in collaboration with the World
Intellectual Property Organization (WIPQO) and aligned with the ST.96 international patent data standard,
CycloneDX enables precise modelling of individual patents, patent families, and ownership assertions.

The following use cases highlight how CycloneDX enables organizations to manage patent-related risks
and improve transparency across the software and hardware supply chain.

Organizations use CycloneDX to identify whether components, services, or processes are covered by
patents, especially when sourcing from third parties. This helps procurement teams assess legal
exposure, validate IP indemnification clauses, and reduce the risk of inadvertent patent infringement
before products are acquired or integrated.

Vendors declare patents they own or license in relation to their software or services. This establishes
clear ownership, enables downstream customers to assess compliance obligations, and reduces
ambiguity that might otherwise lead to licensing disputes or delayed adoption of products.

Many national export regulations apply to patented technologies, particularly in areas such as
cryptography, telecommunications, and dual-use capabilities. By modeling patents and patent families in
CycloneDX, organizations can identify components subject to export control and make informed
decisions about licensing, disclosure, or market access.

When evaluating acquisition targets or entering strategic partnerships, legal and engineering teams use

CycloneDX BOMs to audit declared patents and their applicability to critical systems. This improves due
diligence accuracy, surfaces potential IP conflicts early, and facilitates cleaner integration of assets post-
transaction.

Disagreements over patent usage or ownership can delay deployments, disrupt services, or result in legal
action. CycloneDX enables each entity in the supply chain to document and share structured patent
assertions, reducing ambiguity and creating a verifiable, timestamped audit trail for IP-related claims.

47

https://www.wipo.int/
https://www.wipo.int/
https://www.wipo.int/standards/en/st96

&) owasp
Individual Patents

Transparency in intellectual property is essential to mitigating risk and enabling responsible innovation. In
complex supply chains, where components may originate from multiple sources and jurisdictions,
understanding which patents apply to a given product or process is key to avoiding disputes and ensuring
legal clarity.

"patents": [
{
"bom-ref": "patent-1",
"patentNumber": "US1234567890",
"applicationNumber": "12345",
"jurisdiction": "US",
"publicationNumber": "US-12345",
"title": "Efficient Data Processing Algorithm",
"abstract”: "A novel system and method for improving data processing efficiency.",
"filingDate": "2021-01-15",
"grantDate": "2022-06-01",
"patentExpirationDate": "2042-01-15",
"patentLegalStatus”: "in-force",
"patentAssignee”: [
{
"name": "Example, Inc.”,
"url": ["https:/ /example.com”]
¥
1

externalReferences": [
{
"type": "patent”,
"url": "https:/ /uspto.gov/patent/US12345678B1",
"comment": "Official USPTO page for the patent."”
b
1
bs
1

Patent Families

Many patents are not standalone filings but form part of broader families that span jurisdictions. Tracking
these relationships, is vital for due diligence, ownership analysis, and compliance. CycloneDX supports
the declaration of both individual patents and structured patent families, referencing authoritative sources
where possible.

The following example ties multiple patents together into a family.

"patents™: [
{

"bom-ref": "patent-family-1",

"familyld": "PF-2023001",

"priorityApplication": {
"applicationNumber": "12345",
"jurisdiction": "US",
"filingDate": "2021-01-15"

+

"members": ["patent-1", "patent-2"]

48

&) ownsp
Ownership Assertions

Clarity in patent ownership and usage rights is essential to fostering trust. CycloneDX supports the
explicit assertion of patent rights, allowing organizations to declare ownership, licensing status, or usage
claims for patented technologies. These assertions can be linked to specific components, services, or
stages in a formulation process, enabling precise modeling of IP coverage.

"patentAssertions": [
{
"bom-ref": "patent-assertion-1",
"assertionType": "ownership”,
"asserter": "org-acme-inc",
"patentRefs": ["patent-1"],
"notes": "Covers the core processing architecture for advanced computation.”

"bom-ref": "patent-assertion-2",
"assertionType": "license",

"asserter": "org-acme-inc",

"patentRefs": ["patent-3"],

"notes": "Licensed for use in North America."

Patent Assertion Types

Patent assertions in CycloneDX apply broadly across components, services, and formulation processes,
and even to specific steps within those processes. This allows precise modeling of ownership or licensing
at the point where innovation occurs, whether in code, infrastructure, or a manufacturing pipeline.

Assertion Type ‘ Description
ownership The manufacturer asserts ownership of the patent or patent family.

license The manufacturer asserts they have a license to use the patent or patent family.
third-party-claim A third party has asserted a claim or potential infringement against the

manufacturer’'s component or service.

standards- The patent is part of a standard essential patent (SEP) portfolio relevant to the
inclusion component or service.
prior-art The manufacturer asserts the patent or patent family as prior art that invalidates

another patent or claim.

exclusive-rights The manufacturer asserts exclusive rights granted through a licensing
agreement.
non-assertion The manufacturer asserts they will not enforce the patent or patent family against

certain uses or users.

research-or- The patent or patent family is being used under a research or evaluation license.
evaluation

49

&) owasp

CycloneDX has a rich set of relationships that provide additional context and information about the
objects in the BOM's inventory. All relationships in CycloneDX are expressed explicitly. Some
relationships are declared through the natural use of the CycloneDX format. These include assemblies,
dependencies, and pedigree. Other relationships are formed via references to the object's identity in the
BOM, referred to as bom-ref. The combination of these two approaches dramatically simplifies the
specification, providing necessary guardrails to prevent deviation of its usage and providing an easy path
to supporting enveloped signing and other advanced usages.

Components in a BOM can be nested to form an assembly. An assembly is a collection of components
that are included in a parent component. As an analogy, an automotive dashboard contains an
instrument panel component. And the instrument panel component contains a speedometer component.
This nested relationship is called an assembly in CycloneDX.

Software assemblies that can be represented in CycloneDX can range from large enterprise solutions
comprising multiple systems, to cloud-native deployments containing extensive collections of related
micro-services. Assemblies can also describe simpler inclusions, such as software packages that contain
supporting files.

Assemblies, or leaves within an assembly, can independently be signed. BOMs comprising
component assemblies from multiple suppliers can benefit from this capability. Each supplier
can sign their respective assembly. The creator of final goods can then sign the BOM as a
whole.

The following example illustrates a simple component assembly. In this case, Acme Commerce Suite
includes two other applications as part of its assembly.

"components": [
{
"type": "application”,
"name": "Acme Commerce Suite",
"version": "2.0.0",
"components”: [

{
"type": "application”,
"name": "Acme Storefront Server",
"version": "3.7.0",

%

{
"type": "application”,
"name": "Acme Payment Processor”,
"version™: "3.1.1",

b

1

50

&) owasp

In the following example, Components A-F are included in the metadata component, in this case, an
application. Component C further includes an assembly of Components D and E which is how they were
introduced as components of the application. An assembly is not an indication that Component C
depends on Component D or E, rather Component C bundles Component D and E. If Component C
depends on either D or E, dependency relationships should also be established.

Metadata
Component

|
! } } }

Component A Component B Component C Component F

D] E

Services also have assemblies and work identically to those of components. While component assemblies
describe a component that includes another component, service assemblies describe a service with other
services behind it. A common cloud pattern is the use of API gateways which proxy and orchestrate
connections to relevant microservices. The microservices themselves may not be directly accessible;
rather, they are accessed exclusively through the API gateway. For this scenario, the API gateway service
may contain an assembly of microservices behind it.

CycloneDX provides the ability to describe components and their dependency on other components. This
relies on a component's bom-ref to associate the component with the dependency element in the graph.
The only requirement for bom-ref is that it is unique within the BOM. Package-URL (PURL) is an ideal
choice for bom-ref as it will be both unique and readable. If PURL is not an option or not all components
represented in the BOM contain a PURL, then UUID is recommended. A dependency graph is capable of
representing both direct and transitive relationships. In CycloneDX representation dependencies, a
dependency graph SHOULD be codified to be one node deep, meaning no nested child graphs. All
relations are on the same level.

METADATA COMPONENT BOM COMPONENTS

common-util v3.0.0
web-framework v1.0.0

rest-api v2.5.0

Acme Application

persistence v3.1.0

Direct Dependencies Transitive Dependencies

51

) owasp

The dependency graph above can be codified with the following:

"dependencies": [
{
"ref": "acme-app”,
"dependsOn": [
"pkg:maven/org.acme/web-framework@1.0.0",
"pkg:maven/org.acme/ persistence@3.1.0"

1
T,
{

"ref": "pkg:maven/org.acme/web-framework@1.0.0",
"dependsOn": [
"pkg:maven/org.acme/common-util@3.0.0",
"pkg:maven/org.acme/rest-api@2.5.0"

]
T,
{

"ref": "pkg:maven/org.acme/common-util@3.0.0",
"dependsOn": []

I

{
"ref": "pkg:maven/org.acme/rest-api@2.5.0",
"dependsOn": []

b
]

Components that do not have dependencies MUST be declared as empty elements within
the graph. Components not represented in the dependency graph MAY have unknown
dependencies. It is RECOMMENDED that implementations assume this to be opaque and
not an indicator of a component being dependency-free.

As of CycloneDX v1.6, there are two types of dependencies: dependsOn and provides.

Dependency | Description

Type

dependsOn The bom-ref identifiers of the components or services that are dependencies of this
dependency object.

provides The bom-ref identifiers of the components or services that define a given specification
or standard, which are provided or implemented by this dependency object. For
example, a cryptographic library that implements a cryptographic algorithm. A
component that implements another component does not imply that the
implementation is in use.

The dependency type, dependsOn, is leveraged by classic SBOMs to define a complete graph of direct
and transitive dependencies. However, for cryptographic and similar assets, "provides" allows for many
additional use cases.

62

&) owasp

The following example shows an application (nginx) that uses the libssl cryptographic library. This library
implements the TLSv1.2 protocol. The relationship between the application, the library and the protocol
can be expressed by using the dependencies properties of the SBOM standard.

nginx
(application)
\dfpends on
libssl.so
(library)

provides

TLS 1.2 (protocol)

algorithms: cryptoRefArray:
ECDH google.com (certificate)
(algorithm)
Algorithm: subjectPublicKey:

RS.A SHA512withRSA RSA 2048 (key)

(algorithm) R
(algorithm)
keyAlgorithmRef: securedBy:

AES

(algorithm) RSA AES
(algorithm) (algorithm)

SHA

(algorithm)

Refer to the Authoritative Guide to CBOM for in-depth information about leveraging CycloneDX for
cryptographic use cases.

53

https://cyclonedx.org/guides/

&) ownsp

External References

External references provide a way to document systems, sites, and information that are relevant to a
component, service, or the BOM itself. External references point to resources outside the object they're
associated with and may be external to the BOM, or may refer to resources within the BOM.

External references are established through a URI (URL or URN) and, therefore, can accept any URL
scheme, including https, mailto, tel, and dns. External references may also include formally registered
URNSs such as CycloneDX BOM-Link to reference CycloneDX BOMs or any object within a BOM. BOM-
Link transforms applicable external references into relationships that can be expressed in a BOM or

across BOMs.

External references provide an extensible and data-rich method of forming relationships.

Reference Type | Description

VCS Version Control System

issue-tracker Issue or defect tracking system, or an Application Lifecycle Management (ALM)
system

website Website

advisories Security advisories

bom Bill-of-materials (SBOM, OBOM, HBOM, SaaSBOM, etc)

mailing-list Mailing list or discussion group

social Social media account

chat Real-time chat platform

documentation Documentation, guides, or how-to instructions

support Community or commercial support

source- The location where the source code distributable can be obtained. This is often an

distribution archive format such as zip or tgz. The source-distribution type complements use of
the version control (vcs) type.

distribution Direct or repository download location

distribution- The location where a component was published to. This is often the same as

intake "distribution" but may also include specialized publishing processes that act as an
intermediary

license The URL to the license file. If a license URL has been defined in the license node, it
should also be defined as an external reference for completeness

build-meta Build-system specific meta file (i.e. pom.xml, package.json, .nuspec, etc)

54

&) ownsp

Reference Type | Description

build-system

URL to an automated build system

release-notes

URL to release notes

security-contact

Specifies a way to contact the maintainer, supplier, or provider in the event of a
security incident. Common URIs include links to a disclosure procedure, a mailto
(RFC-2368) that specifies an email address, a tel (RFC-3966) that specifies a
phone number, or dns (RFC-4501) that specifies the records containing DNS
Security TXT

model-card A model card describes the intended uses of a machine learning model, potential
limitations, biases, ethical considerations, training parameters, datasets

log A record of events that occurred in a computer system or application, such as
problems, errors, or information on current operations.

configuration Parameters or settings that may be used by other components or services.

evidence Information used to substantiate a claim.

formulation Describes how a component or service was manufactured or deployed.

attestation Human or machine-readable statements containing facts, evidence, or testimony

threat-model

An enumeration of identified weaknesses, threats, and countermeasures, dataflow
diagram (DFD), attack tree, and other supporting documentation in human-
readable or machine-readable format

adversary-model

The defined assumptions, goals, and capabilities of an adversary

risk-assessment

Identifies and analyzes the potential of future events that may negatively impact
individuals, assets, and/or the environment. Risk assessments may also include
judgments on the tolerability of each risk

vulnerability- A Vulnerability Disclosure Report (VDR) which asserts the known and previously

assertion unknown vulnerabilities that affect a component, service, or product including the
analysis and findings describing the impact (or lack of impact) that the reported
vulnerability has on a component, service, or product

exploitability- A Vulnerability Exploitability eXchange (VEX) which asserts the known

statement vulnerabilities that do not affect a product, product family, or organization, and

optionally the ones that do. The VEX should include the analysis and findings
describing the impact (or lack of impact) that the reported vulnerability has on the
product, product family, or organization

pentest-report

Results from an authorized simulated cyberattack on a component or service,
otherwise known as a penetration test

55

&) ownsp

Reference Type | Description

static-analysis-
report

SARIF or proprietary machine or human-readable report for which static analysis
has identified code quality, security, and other potential issues with the source
code

dynamic-
analysis-report

Dynamic analysis report that has identified issues such as vulnerabilities and
misconfigurations

runtime-analysis-
report

Report generated by analyzing the call stack of a running application

component-
analysis-report

Report generated by Software Composition Analysis (SCA), container analysis, or
other forms of component analysis

maturity-report

Report containing a formal assessment of an organization, business unit, or team
against a maturity model

certification-
report

Industry, regulatory, or other certification from an accredited (if applicable)
certification body

quality-metrics

Report or system in which quality metrics can be obtained

codified- Code or configuration that defines and provisions virtualized infrastructure,

infrastructure commonly referred to as Infrastructure as Code (laC)

evidence Data collected through various forms of extraction or analysis

formulation The observed or declared formulas for how components or services were
manufactured or deployed

poam Plans of Action and Milestones (POAM) complement an "attestation" external
reference. POAM is defined by NIST as a "document that identifies tasks needing
to be accomplished. It details resources required to accomplish the elements of the
plan, any milestones in meeting the tasks and scheduled completion dates for the
milestones".

electronic- An e-signature is commonly a scanned representation of a written signature or a

signature stylized script of the persons name.

digital-signature

A signature that leverages cryptography, typically public/private key pairs, which
provides strong authenticity verification.

rfc-9116 Document that complies with RFC-9116 (A File Format to Aid in Security
Vulnerability Disclosure)
patent References information about patents which may be defined in human-readable

documents or in machine-readable formats such as CycloneDX or ST.96. For
detailed patent information or to reference the information provided directly by
patent offices, it is recommended to leverage standards from the World Intellectual
Property Organization (WIPO) such as ST.96.

56

) owasp

Reference Type | Description

patent-family

References information about a patent family which may be defined in human-
readable documents or in machine-readable formats such as CycloneDX or ST.96.
A patent family is a group of related patent applications or granted patents that
cover the same or similar invention. For detailed patent family information or to
reference the information provided directly by patent offices, it is recommended to
leverage standards from the World Intellectual Property Organization (WIPO) such
as ST.96.

patent-assertion

References assertions made regarding patents associated with a component or
service. Assertions distinguish between ownership, licensing, and other relevant
interactions with patents.

citation A reference to external citations applicable to the object identified by this BOM
entry or the BOM itself. When used with a BOM-Link, this allows offloading citations
into a separate CycloneDX BOM.

other Use this if no other types accurately describe the purpose of the external reference

o

&) ownsp

The following are example external references applied to a component:

"components": [
{
"type": "application”,
"name": "portal-server”,
"version": "1.0.0",
"externalReferences": [
{
"type": "advisories",
"url": "https:/ /example.org/security /feed/csaf"
4
{
"type": "bom",
"url": "https:/ /example.org/support/sbom/portal-server/1.0.0",
"hashes": [
{
"alg": "SHA-256",
"content”: "708f1f53b41f11f02d12a11b1a38d2905d47b099afc71a0f1124ef8582ec7313"
T
1
+
{
"type": "documentation”,
"url": "https:/ /example.org/support/documentation/portal-server/1.0.0"
b
1
b
1

58

&) ownsp
Establishing Relationships With BOM-Link

With CycloneDX, it is possible to reference a component, service, or vulnerability inside a BOM from other
systems or other BOMs. This deep-linking capability is referred to as BOM-Link and is a formally
registered URN, governed by IANA, and compliant with REC-8141.

Syntax:

urn:cdx:serialNumber/version#bom-ref

Examples:

urn:cdx:fO8a6ccd-4dce-4759-bd84-c626675d60a7 /1
urn:cdx:fO8a6ccd-4dce-4759-bd84-c626675d60a7 /1#componentA

Field Description

serialNumber | The unique serial number of the BOM. The serial number MUST conform to RFC-4122.

version The version of the BOM. The default version is 1.

bom-ref The unique identifier of the component, service, or vulnerability within the BOM.

There are many use cases that BOM-Link supports. Two common scenarios are:

o Reference one BOM from another BOM
e Reference a specific component or service in one BOM from another BOM
Linking to External BOMs

As mentioned earlier, external references point to resources outside the object they're associated with
and may be external to the BOM, or may refer to resources within the BOM. External references can be
applied to individual components, services, or to the BOM itself. For example, a component could specify
an external reference pointing to the BOM describing that component.

"externalReferences": [

{
"type": "bom",
"url": "urn:cdx:bdd819e6-ee8f-42d7-a4d0-166ff44d51e8/5",
"comment": "Refers to version 5 of a specific BOM.",

"hashes": [
{
"alg": "SHA-256",
"content": "c7beled902fb8dd4d48997c6452f5d7e509fbcdbe2808b16bcf4edce4cO7d14e”
b
1

b
1

There are many common use cases where referencing external BOMs is desirable. One common case
involves a component in a BOM, where the supplier of the component has published their own BOM
specific to that component. The BOM for the application may simply list the component and refer to that
component's externalized BOM for details of the inventory specific to that component. This is especially
useful for proprietary components where the inventory may not be easily obtainable.

59

https://www.iana.org/assignments/urn-formal/cdx
https://www.iana.org/assignments/urn-formal/cdx
https://www.iana.org/
https://www.rfc-editor.org/rfc/rfc8141.html

&) owasp

The following illustration provides an example of such a scenario. In this case, the supplier of the Acme
Application includes Components A-F, Component C includes an assembly of D and E, and components
D, E, and F are included in the BOM for Acme Application. The BOMs for D, E, and F are external and
provided by other suppliers. The supplier of the Acme Application can leverage the BOMs provided by
those suppliers by utilizing external references. Consumers should ensure they can resolve and process
externally referencable BOMs when encountered.

Acme Application Component F

Component A Component B Component C Component F ——)

—

Component D Component E

The following example helps to illustrate what Component F may look like when represented in the BOM
for Acme Application:

"components": [
{
"bom-ref": "component-f",
"type": "library"”,
"name": "Component F",
"version": "1.0.0",
"externalReferences": [
{
"type": "bom",
"url": "https:/ /example.com/sbom/component-f-1.0.0.cdx.json",
"hashes": [
{
"alg": "SHA-256",
"content": "708f1f53b41f11f02d12a11b1a38d2905d47b099afc71a0f1124ef8582ec7313"

Another common case involves individual BOMSs, per layer, in a deployed stack. For example, a BOM
may contain multiple components, each with external references to its own individual BOMs. A hardware
component could link to the corresponding Hardware Bill of Material (HBOM), the operating system
component could link to its corresponding SBOM, and an application component could do the same.

60

&) owasp

A third case involves a service defined in a BOM where the provider of the service has published a
SaaSBOM containing the individual microservices that make up that consumer-facing service. They may
also have published a corresponding SBOM defining the individual software components powering
individual services.

A fourth case involves patents, patent families, and patent assertions which can be referenced externally.
This allows BOMs to point to other BOMs containing this information or to authoritative legal or technical
documentation, improving traceability and enabling consumers to verify IP claims beyond the BOM itself.

Linking to Objects Within The Same BOM

With BOM-Link, relationships can also be established between objects in the same BOM. For example,
let's establish a relationship where a component defines a threat model. In the example below, acme-
application defines an external reference of type threat-model and uses BOM-Link to reference another
component in the same BOM. The threat model components scope is excluded, indicating that it's
omitted from inventory. The acme-threatmodel component in this example is a data component but could
easily have been a file component. Using a data component allows for the inclusion of the threat model
itself to be captured in the BOM. This approach may be ideal for audit use cases or for instances where
access to external systems is prohibited, such as air-gapped environments.

"bomFormat": "CycloneDX",
"specVersion": "1.7",
"serialNumber": "urn:uuid:3e671687-395b-41f5-a30f-a58921a69b79",
"version": 1,
"components": [
{
"bom-ref": "acme-application”,
"type": "application”,
"name": "Acme Application”,
"version": "1.0.0",
"externalReferences”: [
{
"type": "threat-model",
"url": "urn:cdx:3e671687-395b-41f5-a30f-a58921a69b79/1#acme-threatmodel”
bs
1
+
{
"bom-ref": "acme-threatmodel”,
"type": "data",
"name": "Acme Threat Model",
"scope": "excluded",
"data": [
{
"type": "other",
"contents": {

"attachment": {
"encoding”: "base64",
"contentType": "application/pdf",

"content": "VGhyZWFOIG1vZGVsIGdvZXMgaGVyZQ=="

61

&) owasp

Whether the goal is a separation of concerns or increased cost efficiency and quality, the modularity that
CycloneDX provides is immensely powerful.

Linking External VEX to BOM Inventory

Vulnerability Exploitability eXchange (VEX) is a core capability of CycloneDX that can convey the
exploitability of vulnerable components in the context of the product in which they're used. VEX
information may be very dynamic and subject to change, while the product's SBOM will typically remain
static until such time that the inventory changes. Therefore, it is recommended to decouple the VEX from
the BOM. This allows VEX information to be updated without having to create and track additional BOMs.

In the following example, a vulnerability is identified in a component called Jackson Databind, and the
VEX provides a direct link to the precise component within a BOM.

"vulnerabilities": [

{
"id": "CVE-2018-7489",
"source": {
"name": "NVD",
"url": "https:/ /nvd.nist.gov/vuln/detail/CVE-2019-9997"
b
"analysis": {
"state": "not_affected”,
"justification”: "code_not_reachable",
"response”: ["will_not_fix", "update"],
"detail": "An optional explanation of why the application is not affected by the vulnerable component.”
b
"affects": [
{
"ref": "urn:cdx:3e671687-395b-41f5-a30f-a58921a69b79/1#jackson-databind-2.8.0"
b
1
b

]

62

&) ownsp
Pedigree

CycloneDX can represent component pedigree including ancestors, descendants, and variants which
describe component lineage from any viewpoint and the commits, patches, and diffs which make it
unique. The addition of a digital signature applied to a component with detailed pedigree information
serves as affirmation to the accuracy of the pedigree.

Pedigree Description

ancestors Describes zero or more components from which a component is derived. This is
commonly used to describe forks from existing projects where the forked version
contains a ancestor node containing the original component it was forked from.

descendants | Descendants are the exact opposite of ancestors. This provides a way to document all
forks (and their forks) of an original or root component.

variants Variants describe relations where the relationship between the components are not
known. For example, if Component A contains nearly identical code to Component B.
They are both related, but it is unclear if one is derived from the other, or if they share a
common ancestor.

The following example illustrates two important aspects of pedigree, namely identity and provenance.

"components": [
{
"type": "library",
"group”: "com.example”,
"name": "log4j-core”,
"version": "2.14.0",
"purl”: "pkg:maven/com.example/log4j-core@2.14.0?repository_url=registry.example.com”,
"pedigree”: {
"ancestors”: [
{
"type": "library",
"group”: "org.apache.logging.log4j",
"name": "log4j-core”,
"version": "2.14.0",
"purl”: "pkg:maven/org.apache.logging.log4j/log4j-core@2.14.0"

The example above illustrates two important aspects of pedigree:

1) log4j-core from the Apache LOG4J 2™ project was modified. The modified version has an
identity that is unique from its upstream source. Both the modified and original components are
represented in the pedigree relationship.

2) According to the Package-URL (PURL), the original component was obtained from Maven
Central (the default for Maven artifacts) while the modified component resides in a repository
controlled by example.com. The provenance of the artifacts are maintained.

63

&) owasp

The pedigree capabilities in CycloneDX go much further than establishing relationships; the specification
can also optionally provide transparency into the changes that were made and their purpose. For
example, the precise commits made to the version control system can be represented.

"pedigree": {
"ancestors": [...],
"commits": [
{
"uid": "7638417db6d59f3c431d3el1f261cc637155684cd",
"url": "https:/ /location/to/7638417db6d59f3c431d3e1f261cc637155684cd",
"committer”: {
"timestamp”: "2022-02-13T20:20:39+00:00",
"name": "Astra Snyder",
"email": "astra.snyder@example.com”
+

"message": "Fixes security issue”

Maintaining accurate pedigree information is especially important with open source components whos
source code is readily available, modifiable, and redistributable. In the following example, a patch is
described indicating that the purpose for the modification was to backport a security fix. In addition, the
diff can be attached or referenced via a URL so that SBOM consumers can independently verify the
validity and correctness of the patch.

"pedigree": {
"ancestors": [...],
"patches”: [

{
"type": "backport”,
"diff": {
"text": {

"contentType": "text/plain”,
"encoding”: "base64",
"content": "ZXhhbXBsZSBkaWZmIGhlcmU="

I
"url": "https:/ /example.com/path/to/changes.diff"

b

esolves”: [
{
"type": "security"”,
"id": "CVE-2021-45105",
"source": {
"name": "NVD",
"url": "https:/ /nvd.nist.gov/vuln/detail/CVE-2021-45105"

64

&) ownsp
Composition Completeness and "Known Unknowns"

The inventory of components, services, and their relationships to one another can be described through
the use of compositions. Compositions describe constituent parts (including components, services, and
dependency relationships) and their completeness. The completeness of vulnerabilities expressed in a
BOM may also be described. This allows BOM authors to describe how complete the BOM is or if there
are components in the BOM where completeness is unknown or has been redacted.

Aggregate ’ Description

complete The information is complete. No further relationships
including constituent components, services, or
dependencies are known to exist.

incomplete The information is incomplete.

incomplete_first_party_only The information is incomplete. Only relationships for first-
party components, services, or their dependencies are
represented.

incomplete_first_party_proprietary_only The information is incomplete. Only relationships for first-
party components, services, or their dependencies are
represented, limited specifically to those that are
proprietary.

incomplete_first_party_opensource_only | The information is incomplete. Only relationships for first-
party components, services, or their dependencies are
represented, limited specifically to those that are
opensource.

incomplete_third_party_only The information is incomplete. Only relationships for third-
party components, services, or their dependencies are
represented.

incomplete_third_party_proprietary_only | The information is incomplete. Only relationships for third-
party components, services, or their dependencies are
represented, limited specifically to those that are
proprietary.

incomplete_third_party_opensource_only | The information is incomplete. Only relationships for third-
party components, services, or their dependencies are
represented, limited specifically to those that are
opensource.

unknown The information may be complete or incomplete. This
usually signifies a 'best-effort' to obtain constituent
components, services, or dependencies but the
completeness is inconclusive.

65

&) owasp

The following illustrates how compositions can be used. In this example, there are three compositions.

1. In the first object, the component assembly and the dependencies of the application are both
complete.

2. Inthe second object, the completeness of the component assembly is unknown.

3. Inthe third object, the component is listed in the BOM, but its information and completeness
have been redacted.

"compositions": [
{
"aggregate”: "complete”,
"assemblies”: [
"pkg:maven/partner/shaded-library@1.0"
1
"dependencies”: [
"acme-application-1.0"

]
T,
{

"aggregate": "unknown",
"assemblies": [
"pkg:maven/acme/library@3.0"

]
T,
{

"aggregate": "redacted”,
"assemblies": [
"my-redacted-component”
1
b
]

66

&) owasp

CycloneDX can describe declared and observed formulations for reproducibility throughout the product
lifecycle of components and services. Formulation establishes relationships with components and
services, each of which can be referenced in a given formula through a series of workflows, tasks, and
steps.

This advanced capability provides transparency into how components were made, how a model was
trained, or how a service was created or deployed.

Generally, a component or service's formulation information is externalized from the SBOM into a
dedicated Manufacturing Bill of Materials (MBOM). The SBOM references the MBOM that describes the
environment, configuration, tools, and all other considerations necessary to replicate a build with utmost
precision. This capability allows other parties to independently verify inputs and outputs from a build
which can increase the software's assurance.

The following example illustrates an SBOM where a component referenced the corresponding MBOM
describing how the component was made. Independent access controls can be established by
separating the SBOM inventory from potentially highly-sensitive MBOM data. For example, this allows
organizations to provide SBOMs to a broader audience while keeping stricter control over who has
access to the MBOM.

"externalReferences": [
{
"type": "formulation",
"url": "https:/ /example.com/mboms/acme-library-1.0.cdx.json",
"hashes": [
{
"alg": "SHA-256",
"content": "c7beled902fb8dd4d48997c6452f5d7e509fbcdbe2808b16bcf4edce4cO7d14e™
b
1
b
1

67

) ownsp

Evidence

As we've seen, a BOM is crucial for understanding the composition of the software and its associated
risks. CycloneDX BOMs may include evidence substantiating the declared identity of components within
the BOM. Additionally, the specification includes other observations about the component inventory such
as multiple occurrences, call stack reachability, and evidence of licenses and copyrights.

Component Identity

CycloneDX includes evidence substantiating the declared identity of components within the BOM. This is
vital for communicating the quality and general trustworthiness of the BOMs' contents. Evidence helps
establish the accuracy of the BOM by validating that the declared components match the actual software
components used.

Component identity evidence is made up of the following elements:

Enumeration
_[Field I group purl omniborld
name cpe swhid
__I Confidence I version swid hash
Identity ——| Concluded Value I Technique I
—| Methods Confidence l
—[Tools I Value]
Field
The identity field of the component which the evidence describes.
Field ‘ Description
group The grouping name or identifier. This is often a shortened, single name of the company or

project that produced the component, or its associated domain name.

name The name of the component. This will often be a shortened, single name of the
component.

version The component version

purl The Package-URL (PURL) specification

cpe The Common Platform Enumeration (CPE) conforming to the CPE 2.2 or 2.3 specification

omniborld | The OmniBOR Artifact ID (gitoid)

swhid The Software Heritage persistent identifier
swid ISO-IEC 19770-2: Software Identification (SWID) Tags
hash The cryptographic hash of the component

68

Confidence

&) ownsp

Confidence is supported per-technique along with a cumulative of all methods used. The confidence is
specified as a decimal, from 0 to 1, where 1 is 100% confidence.

Concluded Value

The value of the field (cpe, purl, etc) that has been concluded based on the aggregate of all methods (if

available).

Methods

Multiple methods may be specified. Each method includes the specific technique used, the confidence of
each technique, and the value of the evidence that the technique revealed.

Techniques

The technigue used in this method of analysis.

Technique

source-code-
analysis

’ Description

Examines the source code without executing it

binary-analysis

Examines a compiled binary through reverse engineering, typically via
disassembly or bytecode reversal

manifest-analysis

Examines a package management system such as those used for building
software or installing software

ast-fingerprint

Examines the Abstract Syntax Tree (AST) of source code or a compiled binary

hash-comparison

Evaluates the cryptographic hash of a component against a set of pre-computed
hashes of identified software

instrumentation

Examines the call stack of running applications by intercepting and monitoring
application logic without the need to modify the application

dynamic-analysis

Evaluates a running application

filename Evaluates file name of a component against a set of known file names of identified
software
attestation A testimony to the accuracy of the identify of a component made by an individual
or entity
other Any other technique
Tools

The tools (components or services) which extracted the evidence, performed the analysis, or evaluated

the results.

69

&) ownsp

The following example illustrates how different methods can be combined to substantiate a component's
identity.

Example #1

"components": [
{
"group”: "com.google.code.findbugs",
"name": "findbugs-project”,
"version": "3.0.0",
"purl": "pkg:maven/com.google.code.findbugs/findbugs-project@3.0.0",
"evidence": {
"identity": [
{
"field": "purl”,
"confidence": 1,
"concludedValue": "pkg:maven/com.google.code.findbugs/findbugs-project@3.0.0",
"methods™: [
{
"technique”: "filename”,
"confidence": 0.1,
"value": "findbugs-project-3.0.0.jar"
B
{
"technique": "hash-comparison”,
"confidence": 0.8,
"value": "7c547a9d67cc7bc315¢c93b6e2ff8e4b6b41ae5be454ac249655ech5ca2a85abf”

Example #2

In the following example, two identity objects provide lower-confidence alternate CPEs. Vulnerability
databases such as the National Vulnerability Database, which rely exclusively on CPE, often have
erroneous or data fidelity issues that prevent precise reporting on affected products. CycloneDX solves
this issue by allowing BOM authors to assert component identity, and optionally specify evidence of other
possible identifiers to aid in vulnerability identification.

"evidence": {
"identity": [
{
"field": "cpe",

"confidence": 0.4,
"concludedValue": "cpe:2.3:a:acme:acme-application:1.0.0:# #:xkk k"

i
{

"field": "cpe",
"confidence": 0.4,
"concludedValue": "cpe:2.3:a:acme-systems:acme-application: 1.0.0:# :x ¥k k%"
b
]
b

70

) ownsp

Technique Confidence Recommendations

The following are recommendations for tool creators and BOM consumers. Each technique is a general
category. Tools may employ general purpose or highly specialized rules and analysis, each with varying
degrees of confidence.

Technique ‘ Confidence | Guidance

source-code- 0.3-1.0 Confidence will vary based on rules, type of analyzers used, or 1:1

analysis matching of source with a known good dataset.

binary-analysis 0.2-0.7 The individual rules, analyzers, and dataset coverage will influence
confidence.

manifest-analysis | 0.4 - 0.6 Manifests have known limitations and abuse cases and have
moderate confidence.

ast-fingerprint 0.3-1.0 Wide range of possible confidence due to source and binary
variations, but it has the potential for precise results.

hash-comparison | 0.7 - 1.0 Can successfully match components given a large dataset.
Confidence may vary based on the cryptographic hash function
used and its resistance to collisions.

instrumentation 0.3-0.8 Confidence similar to source-code-analysis with the added benefit of
supporting call-stack evidence

dynamic-analysis | 0.2-0.6 Low to moderate confidence due to the "black box" approach of
many tools.

filename 0-0.1 Filename matching is low-confidence

attestation 0.7-1.0 The testimony of a supplier or trusted third-party, especially when

legally binding, may have high confidence.

71

&) owasp
Occurrences

CycloneDX provides a mechanism to describe identical components spread across multiple locations. For
example, a component may be used by a command-line tool and included as part of a user interface. As
such, the component may be installed in multiple locations on the filesystem. CycloneDX provides a way
to represent this using evidence.

"components": [

{
"type": "library"”,
"name": "acme-persistence”,
"version": "1.0.0",

"evidence": {
"occurrences": [

{
"bom-ref": "d6bf237e-4e11-4713-9f62-56d18d5€2079",

"location”: "/path/to/component”

j
{

"bom-ref": "b574d5d1-e3cf-4dcd-9ba5-f3507eb1b175",
"location": " /another/path/to/component”

Reachability Using Call Stacks

Evidence of the components use through the call stack can be described using CycloneDX. This helps
organizations understand the reachability and potential impact of a specific software component. By
tracing the call stack, which describes how different components interact with each other, BOM
producers and consumers have an elevated level of confidence that a component or vulnerable function
within a component is invoked or not.

"callstack™: {
"frames": [
{

"package": "com.apache.logging.log4j.core",
"module”: "Logger.class"”,
"function”: "logMessage",
"parameters": [
"com.acme.HelloWorld", "Level.INFO", "null", "Hello World"
1
"line": 150,
"column": 17,
"fullFilename": " /path/to/log4j-core-2.14.0.jar! /org/apache/logging/log4j/core/Logger.class"

e

"module”: "HelloWorld.class",

"function": "main",

"line": 20,

"column": 12,

"fullFilename": " /path/to/HelloWorld.class"

72

&) owasp

CycloneDX incorporates SPDX license IDs and expressions to document stated licenses of open-source
components and individual source files. Observed licenses and copyright statements are also fully
supported in the form of evidence. In OpenChain terms, a CycloneDX BOM is classified as a compliance
artifact.

License and Copyright

Organizations seeking OpenChain conformance should review the specification and ensure all verification
requirements are met, including fully documented processes for how the CycloneDX BOMs were created,
distributed, and archived. The CycloneDX BOM Repository Server is a simple and effective way to
automate the publishing, versioning, and archiving of BOMs.

"evidence": {
"licenses": [
{
"license": {
"id": "Apache-2.0",
"url": "http:/ /www.apache.org/licenses/LICENSE-2.0"

b
j
{
"license": {
"id": "LGPL-2.1-only",
"url": "https:/ /opensource.org/licenses/LGPL-2.1"
b
b
1
"copyright™: [

{ "text": "Copyright 2012 Amce Inc. All Rights Reserved." },
{ "text": "Copyright (C) 2004,2005 Example Co" }
1
b

73

https://github.com/CycloneDX/cyclonedx-bom-repo-server

&) owasp

The following recommendations are for common scenarios that are frequently cited or inquired about by
the CycloneDX community.

e The SBOM should have a single bom.metadata.component without subcomponents

e The SBOM should describe the software components and external services the application
depends on in bom.components and bom.services, respectively

e The SBOM should include as much information about the components and services as possible
o The SBOM should describe the dependencies between software components and any services
e The SBOM should describe the lifecycles involved in the creation of the SBOM

e The SBOM should provide evidence of component identity, the methods and techniques used,
and their associated confidence

e The SBOM should provide evidence of observed licenses and copyright statements

e Each microservice should have an independent SBOM

o Optionally, a SaaSBOM can be leveraged to describe the inventory of all services that make up
an application

o Each service in the SaaSBOM can then reference the SBOM specific to that service
e Optionally, the runtime environment and configuration of the application may also be specified

e The SBOM should have a single bom.metadata.component and leverage subcomponents

e The "solution" is the bom.metadata.component. For each product included, ensure each is listed
as a subcomponent of bom.metadata.component

e The SBOM should have a single bom.metadata.component without subcomponents

e Each module should be its own component, specified under bom.components. Each module may
then either:

o Include subcomponents, thus creating a hierarchy, or

o Use external references to link to each modules independent SBOM

74

&) owasp

Include component pedigree for each modified open source component

Use of external references transforms CycloneDX into a "table of contents" for all relevant
information about a product or any component included in a product.

Possibilities include referencing threat models, maturity models, and quality metrics

For products defined in bom.metadata.component, include machine-readable release notes

Create a publishing process for CycloneDX release notes which transforms them into PDF,
Markdown, HTML, or plain text

Leverage custom lifecycles and properties for release management and governance

Sign SBOMs prior to distribution

5

&) owasp

Multiple extension points exist throughout the CycloneDX object model, allowing fast prototyping of new
capabilities and support for specialized and future use cases. The CycloneDX project maintains
extensions that are beneficial to the larger community. The project encourages community participation
and the development of extensions that target specialized or industry-specific use cases.

There are three primary means of extending CycloneDX.

e CycloneDX properties
e CycloneDX properties using registered namespace
e XML extensions

Note on hardened schemas: The XML and JSON schemas are hardened by design. This prevents
unexpected markup, object types, and values from being present in the SBOMs that have not been pre-
defined in the schemas. Hardened schemas are required for many high-assurance use cases. The
security protections inherent in hardened schemas benefit the entire CycloneDX community. While these
protections are highly beneficial, they do restrict serialization formats that are not extensible by design,
most notably JSON.

The CycloneDX standard is fully extensible, allowing for complex data to be represented in the BOM that
is not provided by the core specification. In many cases, name-value pairs are a simple option.
CycloneDX supports Properties which is a name-value store that can be used to describe additional data
about the components, services, or the BOM that isn't native to the core specification. Unlike key-value
stores, properties support duplicate names, each potentially having different values. CycloneDX
properties are a core part of the specification and are supported in all serialization formats, including
XML, JSON, and protocol buffers.

"properties": [
{
"name": "Foo",
"value": "Bar"
b
1

<properties>
<property name="Foo">Bar</property >
</properties>

The CycloneDX standard does not impose restrictions on the property names used. However,
standardization can assist tool implementers and BOM consumers. CycloneDX achieves this through
formally registered namespaces. These namespaces prefix the property name and are defined by the
organization or project that registered the namespace.

Namespaces are hierarchical and delimited with a : and may optionally start with urn:. Examples include:

76

&) ownsp

cdx:gomod:binary
cdx:npm:package:bundled
cdx:pipenv:package

Organizations and open source projects can register a dedicated namespace at the CycloneDX Property
Taxonomy repository on GitHub. https://github.com/CycloneDX/cyclonedx-property-taxonomy

XML Extensions

XML is extensible by design. CycloneDX is a hardened schema, but it does allow for additional XML
elements so long as they reside in a different namespace. This extensibility allows for representing more
complex data structures in CycloneDX that would not otherwise be supported. One such extension
commonly used is XML Signature, used for enveloped signing.

<bom xmins="http:/ /cyclonedx.org/schema/bom/1.7"
serialNumber="urn:uuid:3e671687-395b-41f5-a30f-a58921a69b79"
version="1">
<components>

</components>
<ds:Signature xmiIns:ds="http:/ /www.w3.org/2000/09/xmldsig# " >
<ds:Signedinfo>
<ds:CanonicalizationMethod Algorithm="http:/ /www.w3.org/TR/2001/REC-xml-c14n-20010315" />
<ds:SignatureMethod Algorithm="http:/ /www.w3.0rg/2000/09/xmldsig#rsa-shal" />
<ds:Reference URI="">
<ds:Transforms>
<ds:Transform Algorithm="http:/ /www.w3.org/2000/09 /xmldsig#enveloped-signature" / >
</ds:Transforms>
<ds:DigestMethod Algorithm="http:/ /www.w3.org/2000/09/xmldsig#shal" />
<ds:DigestValue>sZjV4XcMOuD6NA9bXEd2sGWQYEO= < /ds:DigestValue>
</ds:Reference>
</ds:Signedinfo>
<ds:SignatureValue>...</ds:SignatureValue>
<ds:Keylnfo xmIns:ds="http:/ /www.w3.org/2000/09 /xmldsig# " >
<ds:X509Data>
<ds:X509SubjectName>CN =bomsigner,OU =development,O =cyclonedx< /ds:X509SubjectName >
<ds:X509Certificate>...</ds:X509Certificate >
</ds:X509Data>
<ds:KeyValue>
<ds:RSAKeyValue>
<ds:Modulus>...</ds:Modulus>
<ds:Exponent>AQAB< /ds:Exponent>
</ds:RSAKeyValue>
</ds:KeyValue>
</ds:KeyInfo>
</ds:Signature>
</bom>

77

https://github.com/CycloneDX/cyclonedx-property-taxonomy
https://github.com/CycloneDX/cyclonedx-property-taxonomy

&) owasp

Chain of custody - Auditable documentation of point of origin as well as the method of transfer
from point of origin to point of destination and the identity of the transfer agent.

Component function - The purpose for which a software component exists. Examples of
component functions include parsers, database persistence, and authentication providers.

Component type - The general classification of a software components architecture. Examples of
component types include libraries, frameworks, applications, containers, and operating systems.

Direct dependency - A software component that is referenced by a program itself.

Package manager - A distribution mechanism that makes software artifacts discoverable by
requesters.

Package-URL (PURL) - An ecosystem-agnostic specification which standardizes the syntax and
location information of software components.

Patent - An intellectual property right granted by a government authority or regional office that
gives the holder exclusive rights to make, use, sell, or license an invention for a specified period.
In software and systems, patents may apply to algorithms, processes, devices, or other technical
innovations.

Patent Family = A group of related patent filings that originate from a common priority application
and are filed in one or more jurisdictions. Patent families reflect the international coverage of an
invention and support global tracking of ownership, licensing, and legal status across
jurisdictions.

Pedigree - Data which describes the lineage and/or process for which software has been created
or altered.

Point of origin - The supplier and associated metadata from which a software component has
been procured, transmitted, or received. Package repositories, release distribution platforms,
and version control history are examples of various points of origin.

Procurement — The process of agreeing to terms and acquiring software or services for later use.

Provenance - The chain of custody and origin of a software component. Provenance
incorporates the point of origin through distribution as well as derivatives in the case of software
that has been modified.

Software Identification (SWID) - An ISO standard that formalizes how software is tagged.

Software Package Data Exchange (SPDX) - A Linux Foundation project which produces a
software bill of materials specification and a standardized list of open source licenses.

Third-party component — Any software component not directly created including open source,
"source available", and commercial or proprietary software.

Transitive dependency - A software component that is indirectly used by a program by means of
being a dependency of a dependency.

WIPO (World Intellectual Property Organization) - A specialized agency of the United Nations

responsible for promoting the protection of intellectual property (IP) worldwide through
cooperation among states and the administration of international IP treaties.

78

79

&) owasp

Appendix B: References

The following resources may be useful to users and adopters of this standard:

e NTIA Multistakeholder Process on Software Component Transparency, Framing Working Group.
(21 October 2021). Framing Software Component Transparency: Establishing a Common
Software Bill of Materials (SBOM), Second Edition.
https://www.ntia.gov/files/ntia/publications/ntia_sbom framing 2nd edition 20211021.pdf

o NTIA. (12 July 2021). The Minimum Elements for Software Bill of Materials.
https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

e The White House. (12 May 2021). Executive Order on Improving the Nation’s Cybersecurity.
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-
improving-the-nations-cybersecurity/

e SPDX License IDs

e SPDX License List

e OpenChain
e OWASP CycloneDX

e OWASP CycloneDX Tool Center

e OWASP CycloneDX BOM Repository Server

e OWASP Dependency-Track

e OWASP Software Component Verification Standard (SCVS)

o OWASP Software Component Verification Standard (SCVS) BOM Maturity Model

80

https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://spdx.dev/ids/
https://spdx.org/licenses/
https://www.openchainproject.org/
https://cyclonedx.org/
https://cyclonedx.org/tool-center/
https://github.com/CycloneDX/cyclonedx-bom-repo-server
https://dependencytrack.org/
https://scvs.owasp.org/
https://scvs.owasp.org/bom-maturity-model/

*)ownAsp

Copyright © OWASP Foundation

