
Model formulation processes within
Manufacturing Bill of Materials

Guide to MBOM
Authoritative



 

Table of Contents 

About the Guide .......................................................................................................................... 2 
Copyright and License ................................................................................................................ 2 

PREFACE ........................................................................................................................................... 3 

THE INNOVATIVE HISTORY OF OWASP CYCLONEDX ....................................................................... 4 

INTRODUCTION ................................................................................................................................ 5 

What is CycloneDX Formulation?................................................................................................. 5 
Design Philosophy and Guiding Principles ................................................................................... 6 
The Role of MBOM in Supply Chain Transparency ...................................................................... 6 

CORE CONCEPTS AND ARCHITECTURE ........................................................................................... 7 

The Formulation Framework ........................................................................................................ 7 
High-Level MBOM Use Cases ..................................................................................................... 7 
Composability and Separation of Concerns ................................................................................. 8 

CYCLONEDX FORMULATION OBJECT MODEL ................................................................................. 9 

Overview ..................................................................................................................................... 9 
Object relationships ..................................................................................................................... 9 
Formula relationships .................................................................................................................. 9 
Task relationships ...................................................................................................................... 10 
Workflow relationships ............................................................................................................... 12 
Trigger relationships .................................................................................................................. 13 
Step relationships ...................................................................................................................... 14 
Workspace relationships ........................................................................................................... 15 
inputType relationships .............................................................................................................. 15 
outputType relationships ........................................................................................................... 16 
resourceReferenceChoice explained ......................................................................................... 17 
Use Case: Simple software application ...................................................................................... 18 
MBOM Representation .............................................................................................................. 19 
Advanced representation of the build process ........................................................................... 24 

APPENDIX A: GLOSSARY ................................................................................................................ 26 

APPENDIX B: REFERENCES ............................................................................................................. 27 

 

  

 

 

 



   

      2 

 

About the Guide 

CycloneDX is a modern standard for the software supply chain. It has been ratified as ECMA-424 by 

Ecma International. 

The content in this guide results from continuous community feedback and input from leading experts in 

the software supply chain security field. This guide would not be possible without valuable feedback from 

the CycloneDX Industry Working Group (IWG), the CycloneDX Core Working Group (CWG), the many 

CycloneDX Feature Working Groups (FWG), Ecma International Technical Committee 54, and a global 

network of contributors and supporters. 

Copyright and License 

 

Copyright © 2025 The OWASP Foundation. 

This document is released under the Creative Commons Attribution 4.0 International. For any reuse or 

distribution, you must make clear to others the license terms of this work. 

 

First Edition, 21 October 2025 

 

Version Changes Updated On Updated By 

First Edition Initial Release 2025-10-21 CycloneDX Core Working Group 

  

 

 

 

https://ecma-international.org/publications-and-standards/standards/ecma-424/
https://creativecommons.org/licenses/by/4.0/


   

      3 

 

Preface 

Welcome to the Authoritative Guide series by the OWASP Foundation and OWASP CycloneDX. In this 

series, we aim to provide comprehensive insights and practical guidance, ensuring that security 

professionals, developers, and organizations alike have access to the latest best practices and 

methodologies. 

At the heart of the OWASP Foundation lies a commitment to inclusivity and openness. We firmly believe 

that everyone deserves a seat at the table when it comes to shaping the future of cybersecurity 

standards. Our collaborative model fosters an environment where diverse perspectives converge to drive 

innovation and excellence. 

In line with this ethos, the OWASP Foundation has partnered with Ecma International to create an 

inclusive, community-driven ecosystem for security standards development. This collaboration empowers 

individuals to contribute their expertise and insights, ensuring that standards like CycloneDX reflect the 

collective wisdom of the global cybersecurity community. 

One standout example of this model is OWASP CycloneDX, which has been ratified as an Ecma 

International standard and is now known as ECMA-424. By leveraging the strengths of both 

organizations, CycloneDX serves as a cornerstone of security best practices, providing organizations with 

a universal standard for software and system transparency. 

As you embark on your journey through this Authoritative Guide, we encourage you to engage actively 

with the content and join us in shaping the future of cybersecurity standards. Together, we can build a 

safer and more resilient digital world for all. 

 

Andrew van der Stock 

Executive Director, OWASP Foundation 

  

 

 

 



   

      4 

 

The Innovative History of OWASP CycloneDX 

OWASP CycloneDX has carved a legacy steeped in innovation, collaboration, and a commitment to 

openness. OWASP continues to advance software and system transparency standards, prioritizing 

capabilities that facilitate risk reduction. 

 
Source: https://tc54.org/history 

 

 

 

https://tc54.org/history
https://tc54.org/history


   

      5 

 

Introduction 

CycloneDX is a modern standard for the software supply chain. At its core, CycloneDX is a general-

purpose Bill of Materials (BOM) standard capable of representing software, hardware, services, and other 

types of inventory. CycloneDX is an OWASP flagship project, has a formal standardization process and 

governance model through Ecma Technical Committee 54, and is supported by the global information 

security community. 

What is CycloneDX Formulation? 

CycloneDX formulation provides a universal framework for describing how anything came to be - whether 

software, hardware, services, data, algorithms, processes, or even the BOM document itself. The 

formulation capability extends the core CycloneDX specification to capture not just what components 

exist in a system, but how they were created, manufactured, tested, validated, certified, deployed, 

configured, or brought into existence through any process. 

Formulation can describe the provenance and manufacturing process for virtually any entity: 

• Software Applications: How code was compiled, tested, and packaged 

• Hardware Components: Manufacturing processes, quality control, and assembly procedures 

• Services: Deployment, configuration, testing, and operational procedures 

• Cryptographic Algorithms: Implementation, validation, and compliance testing (e.g. FIPS 140-2, 

Common Criteria) 

• Data Sets: Collection, curation, transformation, and validation processes 

• Infrastructure: Provisioning, configuration, and deployment of systems 

• Compliance Artifacts: How certifications, audits, and validations were conducted 

• BOM Documents: The tools, processes, and procedures used to generate a BOM 

The Strategic Importance of Universal Formulation 

In today's interconnected world, understanding how things come to be is critical across all domains: 

• Security Assurance: Verifying that security controls were applied during any creation or validation 

process 

• Compliance Verification: Demonstrating adherence to regulatory requirements 

• Reproducible Processes: Enabling independent verification and reconstruction of any process or 

artifact 

• Supply Chain Risk Management: Identifying potential weaknesses or vulnerabilities in any 

creation, testing, or deployment pipeline 

• Incident Response: Understanding how compromised or defective components were introduced 

into any system 

• Quality Assurance: Documenting quality control processes for any type of deliverable 

• Regulatory Compliance: Meeting documentation requirements across industries 

 

 

 

https://tc54.org/


   

      6 

 

Design Philosophy and Guiding Principles 

The CycloneDX formulation specification is built on several foundational principles that enable universal 

applicability: 

Universal Process Capture: The standard ensures comprehensive capture of any creation, 

manufacturing, testing, validation, certification, or deployment process, regardless of domain. This 

includes everything from software compilation to hardware assembly, service deployment, algorithm 

validation, data curation, and compliance certification. 

Process Integration: Formulation captures key elements of any systematic process, leveraging patterns 

and semantics from workflow management across all domains - whether CI/CD tooling, manufacturing 

execution systems, laboratory information management systems, or compliance management platforms. 

Compositional Integrity: The design assures that compositional elements, their associations, and 

relationships allow for a complete representation of the formulas and processes necessary to enable 

repeatable processes with full traceability across any domain. 

Standards Compatibility: Formulation information is designed to be compatible with domain-specific 

standards and frameworks: 

• Software: Supply-chain Levels for Software Assurance (SLSA), NIST Secure Software 

Development Framework (SSDF) 

• Hardware: IPC standards, ISO 9001 

• Cryptography: FIPS 140-2, Common Criteria (ISO/IEC 15408), NIST Post-Quantum 

Cryptography 

• Healthcare: FDA 21 CFR Part 11, ISO 13485, IEC 62304 

• Automotive: ISO 26262, ISO/SAE 21434 

• Aerospace: DO-178C, DO-254, AS9100 

The Role of MBOM in Supply Chain Transparency 

The Manufacturing Bill of Materials serves as a critical bridge between different aspects of supply chain 

security: 

• SBOM Integration: Links manufacturing processes to the resulting software components 

• SLSA Compliance: Provides detailed build provenance information required for SLSA attestations 

• DevSecOps Enablement: Documents security controls integrated into development workflows 

• Audit Trail Creation: Maintains comprehensive records for compliance and security audits 

  

 

 

 



   

      7 

 

Core Concepts and Architecture 

The Formulation Framework 

The CycloneDX formulation framework describes how something was "formed" or manufactured by 

capturing the complete manufacturing process. This includes: 

Formulas: High-level descriptions of manufacturing processes that can be applied across different 

contexts and environments. 

Workflows: Logical phases of the manufacturing process, organized as directed acyclic graphs of 

dependent tasks. In CI/CD contexts, workflows correspond to pipelines that execute a series of related 

operations. 

Tasks: Individual units of work within workflows, each with specific inputs, outputs, and execution steps. 

Tasks represent atomic operations like building code, running tests, or deploying artifacts. 

Steps: The granular commands and operations executed within tasks, providing the lowest level of detail 

about the manufacturing process. 

High-Level MBOM Use Cases 

The Manufacturing Bill of Materials supports diverse manufacturing scenarios across different domains: 

Software Development (SBOM Integration) 

• Describes how software components are built and deployed via CI/CD pipelines 

• Captures everything from simple Makefile-based builds to complex multi-tier software systems 

• Documents the use of build frameworks, dependency management, and deployment automation 

• Supports both traditional and cloud-native development practices 

Hardware Manufacturing (HBOM Integration) 

• Documents hardware component manufacturing processes 

• Captures assembly instructions, quality control procedures, and testing protocols 

• Links physical manufacturing to digital twins and simulation models 

Machine Learning Operations (MLBOM Integration) 

• Describes ML model training, quantization, optimization, and deployment processes 

• Captures data preprocessing pipelines, model validation procedures, and inference deployment 

• Documents MLOps workflows including model versioning and A/B testing 

Data Processing Pipelines 

• Describes how data is collected, transformed, enhanced, curated, stored, analyzed, and utilized 

• Captures data lineage, processing logic, and quality assurance procedures 

• Documents data governance and compliance controls 

 

 

 



   

      8 

 

Composability and Separation of Concerns 

One of the key architectural decisions in CycloneDX formulation is the separation of 

creation/manufacturing information from component inventories. This composability approach offers 

several advantages across all domains: 

Security Boundaries: Organizations can share component inventories (SBOMs, HBOMs, etc.) with 

customers and partners while maintaining strict control over sensitive process details (formulation data). 

This separation enables appropriate access controls and information sharing policies across different 

stakeholder groups. 

Scalability: Large or complex processes can be decomposed into manageable, reusable components 

that can be linked and referenced as needed. This applies whether dealing with software builds, hardware 

assembly lines, or compliance certification processes. 

Flexibility: Different stakeholders can access the level of detail appropriate for their use cases, from high-

level component lists to detailed procedural documentation. 

Formulation Linking Strategy 

The recommended approach for managing formulation information involves referencing it from the 

primary component BOM using CycloneDX's BOM-Link mechanism. This applies universally whether 

describing software builds, hardware manufacturing, service deployment, or compliance processes: 

"externalReferences": [ 
  { 
    "type": "formulation", 
    "url": "https://example.com/mboms/acme-library-1.0.cdx.json", 
    "hashes": [ 
      { 
        "alg": "SHA-256", 
        "content": "c7be1ed902fb8dd4d48997c6452f5d7e509fbcdbe2808b16bcf4edce4c07d14e" 
      } 
    ] 
  } 
] 

This approach enables: 

• Independent Access Control: Different security policies for inventory vs. process data across all 

domains 

• Modular Management: Separate lifecycle management for different aspects of the BOM 

(inventory vs. provenance) 

• Reduced Complexity: Smaller, focused documents that are easier to process and validate 

• Domain Flexibility: Different formulation documents for different aspects (manufacturing, testing, 

deployment, certification) 

  

 

 

 



   

      9 

 

CycloneDX Formulation Object Model 

Overview 

The CycloneDX Formulation Object Model establishes a comprehensive hierarchy for representing 

manufacturing processes. Understanding these relationships is crucial for effective MBOM 

implementation. 

CycloneDX is able to represent a formulation by providing a means to capture manufacturing processes 

using formulas which describe the workflows, tasks, steps and their relationships along with all referenced 

resources used during the processes. 

The formulation object model, described in this section, is intended to enable the verification of 

manufacturing compliance with any requirements or policies for the associated component or product 

described by its BOM. Additionally, the level-of-detail that can be represented by the model could 

potentially be leveraged to provide enough information to enable independent reproduction of a 

component's manufacturing process. 

Formulation Structure 

Formulation → Formula → Workflows → Tasks → Steps 

This hierarchical structure mirrors real-world manufacturing processes, where high-level formulations 

contain specific formulas, which are implemented through workflows containing tasks that execute 

specific steps. 

The following diagram shows some of the significant objects that are specifically included in the 

CycloneDX Formulation Object Model: 

 

Object relationships 

Note: The object diagrams do not show every field that is available for a given object, but only includes 

those that are relevant to conveying the relational model. 

Formula relationships 

 

 

 

 



   

      10 

 

formulation 

The formulation attribute of the CycloneDX BOM object can be used to describe the set of processes, as 

formula, which detail how the top-level component or service described by the BOM was manufactured. 

formula 

A formula can describe a set of workflow objects each detailing one or more phases of how the 

associated component or service was tested, built, delivered, or deployed as a set of dependent tasks. 

workflows 

The list of workflows which were executed in order to manufacture a BOM's respective component. 

Note: In the context of software Continuous Integration and Delivery (CI/CD), workflows may also we 

referred to as "pipelines". 

components 

The list of software, hardware or other components that are referenced by one or more formula and its 

workflows or tasks which have not been declared elsewhere within the same BOM document. 

For example, build frameworks and tools, scanning tools, test tools and their data, runtime hardware, and 

software environment information, etc. 

Note: Any component referenced by formula must be declared within the same BOM document for the 

formula to be considered valid. 

services 

The list of services that are referenced by one or more formula and its workflows or tasks which have not 

been declared elsewhere within the same BOM document. 

For example, services used for security scanning, artifact and data storage, logging, testing, deployment, 

etc. 

Note: Any service referenced by the formula must be declared within the same BOM document for the 

formula to be considered valid. 

Task relationships 

 

 

 

 



   

      11 

 

task 

Describes the inputs, sequence of steps and resources used to accomplish a task in order to produce its 

outputs. 

Note: In the context of software Continuous Integration and Delivery (CI/CD), tasks are sometimes 

referred to as "actions". 

trigger 

Describes the manual (human) or automated action or event that triggered the task execution (i.e., 

caused its steps to be executed). 

taskTypes 

Describes the types of tasks, as a list of human-readable, single-word strings, for informational purposes. 

The following taskType values are defined: 

• copy: A task that copies software or data used to accomplish other tasks in the workflow. 

• clone: A task that clones a software repository into the workflow in order to retrieve its source 

code or data for use in a build step. 

• lint: A task that checks source code for programmatic and stylistic errors. 

• scan: A task that performs a scan against source code, or built or deployed components and 

services. Scans are typically run to gather or test for security vulnerabilities or policy compliance. 

• merge: A task that merges changes or fixes into source code prior to a build step in the workflow. 

• build: A task that builds the source code, dependencies and/or data into an artifact that can be 

deployed to and executed on target systems. 

• test: A task that verifies the functionality of a component or service. 

• deliver: A task that delivers a built artifact to one or more target repositories or storage systems. 

• deploy: A task that deploys a built artifact for execution on one or more target systems. 

• release: A task that releases a built, versioned artifact to a target repository or distribution 

system. 

• clean: A task that cleans unnecessary tools, build artifacts and/or data from workflow storage. 

• other: A workflow task that does not match current task type definitions. 

Note: The current set of task types currently favor those that typically appear in modern Continuous 

Integration and Continuous Delivery (CI/CD) applications and platforms for software. Future versions of 

this specification may add additional task types for other domains. 

workspaces 

The list of workspace objects that are associated with the workflow. A workspace is an accepted 

abstraction of a filesystem that is shared between tasks and their steps. For example, a workspace can 

hold the source for the BOM component being built, the binary produced by a build step, output from 

scanning tools, etc. 

steps 

Describes the sequence of steps, which may include the actual commands, that were executed by the 

task. 

 

 

 



   

      12 

 

inputs 

Describes references to resources or data made accessible, as input, to the task (and its step's 

commands) at runtime by the executor. For example, a configuration file used by a tool. 

Note: the actual configuration file would be declared as a component or externalReference within the task 

itself or its parent workflow. 

outputs 

Describes references to resources or data produced, as output, by the task (and its step's commands). 

For example, a log file or metrics data. 

Note: the actual log or metrics data files would be declared as components or externalReferences within 

the task itself or its parent workflow. 

resourceReferences 

References to component or service resources that are used to realize the resource instance within the 

execution environment. For example, a logging service or artifact storage service reference. 

See section resourceReferenceChoice explained for more details on how to specify resource references. 

runtimeTopology 

A graph of the component runtime topology for workflow's instance. 

Workflow relationships 

 

workflow 

A workflow can describe a logical phase of the manufacturing process as a directed acyclic graph of 

dependent typed task objects. 

The workflow object is a viewed (and can be treated) as a specialized "task" which shares most of the 

same attributes or fields as the task object. This allows a workflow to be referenced as a task in another 

workflow as part of the taskDependencies graph. 

The workflow object uniquely adds the following object attributes described below: 

• tasks - see section below for details. 

• taskDependencies - see section below for details. 

and duplicates the attributes described for the task object, but are instead relative to the workflow as a 

whole: 

• trigger - for the workflow as a whole. 

 

 

 



   

      13 

 

• taskTypes - inclusive of all tasks listed in the workflow. 

• workspaces - inclusive of all workspaces available, subject to access control, to all tasks in the 

workflow. 

• inputs - to the workflow as a whole which may selectively be provided as inputs to the workflow's 

tasks. 

• outputs - from the workflow as a whole. 

• resourceReferences - made available to the workflow as a whole which may selectively be 

referenced to the workflow's tasks. 

• runtimeTopology - Please note that in some execution environments, tasks within a workflow may 

be configured to run independently in separate runtime environments. 

Note: The concept of the workflow object as a "near subclass" of a task object was too complex to map 

easily to JSON schema so it is described here. 

tasks 

The list of task objects that contain the the low-level steps or commands 

taskDependencies 

A dependency graph of the tasks for the workflow indicating (observed) execution order. 

Note: The task dependency graph should be acyclic and map to the production of one or more output 

artifacts 

Trigger relationships 

 

 

 

 



   

      14 

 

trigger 

Describes a resource that can conditionally activate (or "fire") tasks based upon associated events and 

their data. Triggers are a common event-driven concept that can be defined and managed within the 

context of typical CI/CD platforms or systems. They enable the conditional execution of associated 

workflows or tasks in response to manual or automated events. 

Triggers are an important part in understanding the context of why a workflow was run and affirm that any 

security and compliance policies were adhered to. 

resourceReferences 

References to component or service resources that are used to instantiate the trigger. These can include 

references to component or service resources, apart from the event data, that were used by the trigger to 

evaluate conditions (along with inputs) or produce outputs that would be consumed by the associated 

task or workflow. 

event 

Describes the event data that caused the associated trigger to be executed. 

conditions 

A list of conditions used to determine if a trigger should be activated and cause its associated task or 

workflow to be executed. Each condition captures the logical expression, and optionally any interpolated 

values, that the execution environment used to evaluate the condition. 

inputs 

Represents resources and data provided to the trigger at runtime by the underlying execution 

environment that provide additional information used to evaluate conditions. 

outputs 

Represents resources and data provided by the trigger at runtime to the associate task or workflow. 

Step relationships 

 

step 

Describes the specific the ordered set of commands executed in order to accomplish its owning task. 

commands 

A text representation of the executed command. For example, this might be an interpolated shell 

command that copied files or ran a tool. 

 

 

 



   

      15 

 

Workspace relationships 

 

workspace 

A named, logical resource typically backed by a filesystem or data resource shareable by workflow tasks. 

In some cases, these workspaces are implemented with access control to limit access to specific 

workflows or tasks. 

resourceReferences 

References to component or service resources that are used to realize the workspace. These could 

include references to resources such as storage services. 

See section resourceReferenceChoice explained for more details on how to specify resource references. 

volume 

Information about the actual volume instance, if applicable, allocated to workspace. 

inputType relationships 

 

inputType 

Describes different types of possible inputs to workflows, tasks, triggers and other objects in the model. 

 

 

 



   

      16 

 

resourceReferenceChoice 

This type is used to reference one of the CycloneDX types that points to a resource. 

Specifically for inputs, they can describe the source of the input data, the target for the input data and/or 

a resource that adds additional data to the input. 

For example, the source of input data may be the output from a previous task, while conversely the 

output of a task can declare its intended target. 

parameter 

A representation of a functional parameter. 

property 

A property is a lightweight, name-value pair and defined as part of the core CycloneDX specification. 

attachment 

An attachment Specifies the metadata (e.g., content type, encoding, etc.) and content for an content 

data and defined as part of the core CycloneDX specification. 

outputType relationships 

 

outputType 

Describes different types of possible outputs from workflows, tasks, triggers and other objects in the 

model. 

Most of the object attributes are identical to those described in the inputType relationships section. 

 

 

 



   

      17 

 

resourceReferenceChoice explained 

 

resourceReferenceChoice 

This type is used composite existing CycloneDX reference types allowing different parts of a model to 

"point to" resources either defined within other parts with the same BOM document, another BOM or 

external to the BOM using a URL. 

These include: 

• bomLinkElementType - Descriptor for an element in a BOM document. See 

https://cyclonedx.org/capabilities/bomlink/. 

• refLinkType - Descriptor for an element identified by the attribute bom-ref in the same BOM 

document. In contrast to bomLinkElementType. 

• externalReference - This type is used to reference a resource external to the current BOM 

document using a url. 

  

 

 

 

https://cyclonedx.org/capabilities/bomlink/


   

      18 

 

Use Case: Simple software application 

This example shows how a simple helloworld application's build process can be captured by an MBOM. 

Workflow overview 

Application source code 

The application itself is composed a single "C" source file, helloworld.c, which contains the following code: 

#include <stdio.h> 
 
int main() { 
    printf("Hello, World!\n"); 
    return 0; 
} 

Application Makefile 

The application is built using the GCC compiler using the following Makefile: 

CC = gcc 
CFLAGS = -Wall 
 
build: clean hello 
 
hello: helloworld.c 
    $(CC) $(CFLAGS) -o hello helloworld.c 
 
clean: 
    rm -f hello 

Build process 

The application can be built by manually running the following command in a terminal/shell of a suitable 

operating system: 

$ make build 

which would cause the Makefile's build target (task) to be executed which would, in turn, case the 

dependent clean and hello targets to be executed in order and result in the creation of an executable file 

called hello. 

Assumptions 

When representing the manufacturing process in CycloneDX format, this example assumes: 

• The formulation represents a local, manual build process that is executed on a single machine of 

source code already cloned from a GitHub repository. 

• All referenced "tools" are already installed on the local system. 

• For readability, component name values will use "short" names. For example, helloworld.c will be 

used instead of a best practice name CycloneDX/MBOM-examples/simple-application-

makefile/helloworld.c; however, the corresponding bom-ref values will be based on the GitHub 

repository URL and commit hash to preserve uniqueness of identity. 

 

 

 



   

      19 

 

• We will not attempt to encode the non-essential components for the Software Bill-of-Materials 

(SBOM) which is better show in other guides. For example use case, the "include" (header) file 

stdio.h is not represented. 

MBOM Representation 

For effectively conveying the essential representation of the build process using the CycloneDX 

Formulation objects, this example will initially focus on capturing only the key build artifacts, tools, and 

information. Then, we will show how additional information can be added to encode a more complete 

picture of the entire manufacturing process. 

In order to simplify the readability of relationships in an MBOM, CycloneDX bom-ref values shown in the 

example will take the URI form: "cdx:mbom:<CycloneDX entity name>:uuid:<uuid>" although this is not a 

requirement of the CycloneDX Formulation. 

Components 

This section defines the essential component objects referenced in building the simple application. For 

files in this example, we will use the file:// URI scheme with an empty host to reference the local file 

system. 

The component objects are defined as follows: 

Source components 

• helloworld.c:  

  { 
  "bom-ref": "file:///CycloneDX/MBOM-examples/simple-application-makefile/helloworld.c", 
  "type": "file", 
  "name": "helloworld.c", 
  "version": "1.0", 
  "hashes": [ 
    { 
      "alg": "SHA-256", 
      "content": "..." 
    } 
  ] 
} 

Build components 

• Makefile  

  { 
  "bom-ref": "file:///CycloneDX/MBOM-examples/simple-application-makefile/Makefile", 
  "type": "file", 
  "name": "Makefile", 
  "version": "1.0", 
  "hashes": [ 
    { 
      "alg": "SHA-256", 
      "content": "..." 
    } 
  ] 
} 

• gcc - GCC compiler  

 

 

 



   

      20 

 

  { 
  "bom-ref": 
"file:///Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/gcc", 
  "type": "application", 
  "name": "gcc", 
  "version": "16.0.0 (clang-1600.0.26.4)" 
} 

• make utility  

  { 
  "bom-ref": 
"file:///Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/make
", 
  "type": "application", 
  "name": "GNU Make", 
  "version": "3.81" 
} 

Event-Trigger relationship 

This section describes how the human action make build can be represented in event and trigger data 

structures as shown here: 

 

Event 

In all cases, workflows are triggered by some sort of explicit, human or automated event. In this example, 

a person manually executed the following command in a Bash command prompt: 

make build 

this event could be represented as follows: 

timestamp: “2025-01-01T14:00:00+00:00”, 
name: “make build”, 
description: “Command line build” 

Note: Workflows may be triggered by events dynamically received from other systems or services. In 

these cases, the event could include the raw event data itself as well as information.about the source 

system or service the event was sent by. 

Trigger 

The trigger provides context about an event, as well as describing any additional information or resources 

used to augment an event before "triggering" an associated workflow. For this use case, the event and 

 

 

 



   

      21 

 

trigger represents a "manual" event type with a clear name and identifier (i.e., a uid) along with a more 

detailed description. 

This could be represented as follows: 

{ 
  “timeActivated”: “2025-01-01T14:00:00+00:00”, 
  “bom-ref": "cdx:mbom:trigger:uuid:1a9b…", 
  “uid": ”uuid:1a9b…", 
  “type": "manual", 
  “name": "make trigger", 
  “description": "Bash, command-line build trigger” 
  “event”: { 
    // event content goes here 
  }, 
  ... 
} 

Note: In this simple example, the trigger directly represents the event itself so the event's timestamp value 

is the same as the trigger's timeActivated value. However, in more complex event-driven build systems, 

the trigger represents a separable action subject to external rules such that the event timestamp value 

would reflect an earlier date-time than the trigger's timestamp value. 

Task-workflow relationship 

 

 

 

 



   

      22 

 

Tasks 

In this example, there is only one logical "task"; that is, the build process initiated by the make build 

command step. This task itself can be represented as: 

{ 
  "bom-ref": "cdx:mbom:task:uuid:dbb6c5c0-6958-4a18-ac67-d897dbee76b6", 
  "uid": "uuid:dbb6c5c0-6958-4a18-ac67-d897dbee76b6", 
  "taskTypes": ["clean", "build"], 
  "name": "make build task", 
  "description": "A task that captures 'make build' step.", 
  ... 
} 

As you can see we provide the two logical taskType values of clean and build to represent the logical 

steps the make command would perform as a result of resolving the target dependencies within the 

Makefile. 

Adding steps to the task 

The single command-line, build step can be added to the task: 

{ 
  "bom-ref": "cdx:mbom:task:uuid:dbb6....", 
  "uid": "uuid:dbb6...", 
  "name": "make build task", 
  ... 
  "steps": [ 
    { 
      "name": "run make build", 
      "commands": [  
        { 
          "executed": "make build" 
        } 
      ] 
    } 
  ] 
} 

The trigger defined previously can be added to the task as follows: 

{ 
  "bom-ref": "cdx:mbom:task:uuid:dbb6....", 
  "uid": "uuid:dbb6...", 
  "name": "make build task", 
  ... 
  "trigger": { 
    "bom-ref": "cdx:mbom:trigger:uuid:1a9b...", 
    "uid": "uuid:1a9b....", 
    "type": "manual", 
    "name": "make trigger", 
    "description": "Bash, command-line build trigger", 
  }, 
  ... 
} 

 

 

 



   

      23 

 

Workflow 

In this example, the workflow represents the single task execution as follows: 

{ 
  “bom-ref": "cdx:mbom:workflow:uuid:431ff656-8f90-410b-a614-c3916b842036", 
  “uid": ”uuid:431ff656-8f90-410b-a614-c3916b842036", 
  “taskTypes”: [“clean”, “build”], 
  “tasks”: [ 
    // task goes here 
  ], 
  “taskDependencies”: [ 
    {  
      “ref”: “cdx:mbom:task:uuid:dbb6…" 
    } 
  ], 
  “trigger”: { 
    // trigger goes here 
  }, 
  “resourceReferences”: [...], 
  “runtimeTopology”: [...], 
  ... 
} 

Formulation-Formula-Components relationship 

 

Formula 

The formulafor building this example application, in addition to describing the single workflow for this 

example, also includes the full listing (or manifest) of resources referenced by the workflow and its task. 

These elements can be represented as follows: 

{ 
  components: [  
       // component content goes here 
  ], 
  workflows: [ 
      // workflow content goes here 
  ] 
} 

 

 

 



   

      24 

 

and finally the formula is placed under the CycloneDX BOM's formulation keyname of the Software Bill of 

Materials (SBOM): 

{ 
  "bomFormat": "CycloneDX", 
  "specVersion": "1.7", 
  "serialNumber": "urn:uuid:2820...", 
  "metadata": { 
    "component": { 
      "type": "application", 
      "name": "simple-application", 
      ... 
    }, 
    ... 
  }, 
  "formulation: [{ 
      // formula content goes here 
    } 
  ], 
  ... 
} 

Why list components under the formula? 

In our example, we chose to list components used to build the application under the formula keyname. 

However, it is possible to instead list them under the top-level components array's keyname. 

This choice was made since this allows the MBOM information to be separated into a separate document 

from the associated SBOM and linked via the CycloneDX BOM-Link capability. This would be 

accomplished in the same manner as described for separating vulnerability information using the 

CycloneDX Vulnerability Disclosure Report (VDR) capability.* 

 

Advanced representation of the build process 

For many security and compliance use cases, it is necessary to represent the runtime topology (i.e., the 

build or manufacturing platform) of a software application and allowing independent verification the 

process is repeatable. This section shows how to add some of this information to the MBOM for this 

example. 

 

 

 

https://cyclonedx.org/capabilities/bomlink/
https://cyclonedx.org/capabilities/vdr/


   

      25 

 

Runtime topology 

 

The runtime topology represents any software frameworks, platforms, tools, hardware and other 

resources used to create the software application used to run the workflow and its tasks. 

This section will show how to represent the runtime topology for the simple application's build process 

which includes a Bash shell running on a Mac OS X machine. 

Platform 

For this example, we can choose to represent the key platform elements used to run the make command. 

This could include the shell and the operating system used to run the build process as CycloneDX 

components. For example: 

• The Bash shell used to run the make command:  

  { 
  "bom-ref": "file:///bin/bash", 
  "type": "platform", 
  "name": "GNU bash", 
  "version": "3.2.57(1)-release (arm64-apple-darwin23)" 
} 

• The OS X operating system the Bash terminal was running on:  

  { 
  "bom-ref": "urn:cdx:os://macosx@14.6.1+23G93", 
  "type": "operating-system", 
  "name": "macOS", 

 

 

 



   

      26 

 

  "version": "14.6.1+23G93" 
} 

Hardware 

Additionally, we could describe the actual device used for the build process to an appropriate level of 

detail: 

• Mac OS X machine  

  { 
  "bom-ref": "urn:cdx:device:sn:CBFX71DM3", 
  "type": "device", 
  "name": "Matt's MacBook Pro", 
  "description": "Apple M3 Max, 16 inch" 
} 

Runtime topology relationships 

 

Including the BOM creation in the Makefile 

It is envisioned that Software-Bill-of-Materials (SBOM) will be created as part of the build process 

including Manufacturing (MBOM) information. This could be reflected as a post-build target in the 

Makefile which would bring additional SBOM generation tooling into the manufacturing process itself and 

be reflected in the SBOM/MBOM document as well. 

Appendix A: Glossary 

• Formulation - Describes the set of processes, for how a component or service was 

manufactured, tested, delivered and/or deployed. These processes are captured as formula 

which describe the workflows, tasks and steps along with components and services used 

(observed) in those processes. 

• Workflow - Workflows are used to manage repetitive processes and tasks that occur in a 

particular order. In the context of Continuous Integration and Continuous Delivery (CI/CD) 

pipelines, workflows are used to define the sequence of steps that need to be executed in order 

to build, test, and deploy an application. Workflows can be defined using various tools such as 

Jenkins, Tekton, or CircleCI. 

  

 

 

 



   

      27 

 

Appendix B: References 

The following resources may be useful to users and adopters of this standard: 

• Package-URL specification: https://github.com/package-url/purl-spec/ 

o Specifically, the pURL types reference in examples: 

▪ github 

• Example: pkg:github/package-url/purl-

spec@244fd47e07d1004#everybody/loves/dogs 

▪ golang 

• Example:pkg:golang/github.com/gorilla/context@234fd47e07d1004f0a

ed9c#api 

▪ huggingface 

• Example: pkg:huggingface/microsoft/deberta-v3-

base@559062ad13d311b87b2c455e67dcd5f1c8f65111?repository_ur

l=https://hub-ci.huggingface.co 

References in examples 

• gcc https://gcc.gnu.org/ 

• Tekton https://tekton.dev/ 

 

• SPDX License IDs 

• SPDX License List 

• OpenChain 

• OWASP CycloneDX 

• OWASP CycloneDX Tool Center 

• OWASP CycloneDX BOM Repository Server 

• OWASP Dependency-Track 

• OWASP Software Component Verification Standard (SCVS) 

• OWASP Software Component Verification Standard (SCVS) BOM Maturity Model 

 

 

 

https://github.com/package-url/purl-spec/
https://github.com/package-url/purl-spec/
https://github.com/package-url/purl-spec/blob/master/PURL-TYPES.rst#github
https://github.com/package-url/purl-spec/blob/master/PURL-TYPES.rst#golang
https://github.com/package-url/purl-spec/blob/master/PURL-TYPES.rst#huggingface
https://gcc.gnu.org/
https://gcc.gnu.org/
https://tekton.dev/
https://tekton.dev/
https://spdx.dev/ids/
https://spdx.org/licenses/
https://www.openchainproject.org/
https://cyclonedx.org/
https://cyclonedx.org/tool-center/
https://github.com/CycloneDX/cyclonedx-bom-repo-server
https://dependencytrack.org/
https://scvs.owasp.org/
https://scvs.owasp.org/bom-maturity-model/


Copyright © OWASP Foundation


