(©) CycloneDX

Authoritative

Guide to MBOM
Model formulation processes within

Manufacturing Bill of Materials

First Edition

F)ownsp

ADOUL e GUITE ... e 2

COoPYNGNE ANA LICENSE ...ttt e ettt e 2
PREF A CE 3
THE INNOVATIVE HISTORY OF OWASP CYCLONEDX ...ttt 4
INTRODUCTION L.ttt 5

What is CycloneDX FOrmMUIALIONT..........coiiiieee e 5

Design Philosophy and Guiding PriNCIPIESvviiiiiieeieeee e 6

The Role of MBOM in Supply Chain TranSParenCyveeieiiiiiiiiiiieeeee s 6
CORE CONCEPTS AND ARCHITECTUREccciiiiiiiiiii 7

The FOrmulation FrameEWOTK et e e e e e e e et e e e e e e e e e 7

High-Level MBOM USE CaSESueiiiiiiiie ettt ettt et e s 7

Composability and Separation 0f CONCEIMScooueiiiieee e 8
CYCLONEDX FORMULATION OBJECT MODELccceciiiiiiiiiiieiee e s s ciiiiieee e e e e s s sssrireee s e e e s s s snnnsnneesseessnanns 9

OVBIVIBW ...ttt e e oo oottt e e e e e e ettt et e e e e e e e ettt e e e e e e e e e et bt e e e e e e e e nneeees 9

ODJECT TElatIONSNIDS ...t 9

Formula relationShipsSooviiiii 9

TASK FEIATIONSNIDS ..ot 10

WOrKflow relationShipS ..o 12

TrIQQEr TEIATIONSIIDS ..ttt e ettt e e 13

SEEP FEIAtIONSNIDS ...ttt 14

Workspace relationships ... 15

INPUETYPE MElatiONSNIDS ...t 15

OULPULTYPE relatioNShIDS ..ottt e e e e e e e e e e e nes 16

resourceReferenceChoiCe eXPlaiNEdccoiiiiiiiii e 17

Use Case: Simple software appliCationc..eiiiiiiiiii e 18

MBOM RePresentationoooiiiiiiiii 19

Advanced representation Of the DUIld ProCESSviiiiiiiiiiiie e 24
APPENDIX Az GLOSSARYiuitiiuuitututuuttutesuesesssesassssesessssseesssssssss e sees s ssssssssssssssssssssssssssssssssssssssnnnnes 26

APPENDIX B: REFERENGCES.coiiiiiiiiiiiiiii e 27

) owasp
About the Guide

CycloneDX is a modern standard for the software supply chain. It has been ratified as ECMA-424 by
Ecma International.

The content in this guide results from continuous community feedback and input from leading experts in
the software supply chain security field. This guide would not be possible without valuable feedback from
the CycloneDX Industry Working Group (IWG), the CycloneDX Core Working Group (CWG), the many
CycloneDX Feature Working Groups (FWG), Ecma International Technical Committee 54, and a global
network of contributors and supporters.

Copyright and License

©®

Attribution 4.0 International
(CC BY 4.0)

Copyright © 2025 The OWASP Foundation.

This document is released under the Creative Commons Attribution 4.0 International. For any reuse or
distribution, you must make clear to others the license terms of this work.

First Edition, 21 October 2025

Version ‘ Changes ’ Updated On | Updated By

First Edition | Initial Release | 2025-10-21 | CycloneDX Core Working Group

https://ecma-international.org/publications-and-standards/standards/ecma-424/
https://creativecommons.org/licenses/by/4.0/

&) owasp

Welcome to the Authoritative Guide series by the OWASP Foundation and OWASP CycloneDX. In this
series, we aim to provide comprehensive insights and practical guidance, ensuring that security
professionals, developers, and organizations alike have access to the latest best practices and
methodologies.

At the heart of the OWASP Foundation lies a commitment to inclusivity and openness. We firmly believe
that everyone deserves a seat at the table when it comes to shaping the future of cybersecurity
standards. Our collaborative model fosters an environment where diverse perspectives converge to drive
innovation and excellence.

In line with this ethos, the OWASP Foundation has partnered with Ecma International to create an
inclusive, community-driven ecosystem for security standards development. This collaboration empowers
individuals to contribute their expertise and insights, ensuring that standards like CycloneDX reflect the
collective wisdom of the global cybersecurity community.

One standout example of this model is OWASP CycloneDX, which has been ratified as an Ecma
International standard and is now known as ECMA-424. By leveraging the strengths of both
organizations, CycloneDX serves as a cornerstone of security best practices, providing organizations with
a universal standard for software and system transparency.

As you embark on your journey through this Authoritative Guide, we encourage you to engage actively
with the content and join us in shaping the future of cybersecurity standards. Together, we can build a
safer and more resilient digital world for all.

Andrew van der Stock
Executive Director, OWASP Foundation

&) owasp

The Innovative History of OWASP CycloneDX

OWASP CycloneDX has carved a legacy steeped in innovation, collaboration, and a commitment to
openness. OWASP continues to advance software and system transparency standards, prioritizing

capabilities that facilitate risk reduction.
O October 2025

OWASP CycloneDX v1.7

First specification supporting citations that
June 2024 O improve traceability, attribution, and auditability,
and comprehensive support for patents and

patent families to address intellectual property
transparency.

CycloneDX v1.6 ratified as an Ecma International .
standard and published as ECMA-424. O April 2024
OWASP CycloneDX v1.6

First specification to support cryptographic
December 2023 O assets for Post-Quantum Cryptography (PQC)

readiness and first general-purpose attestation

International Standardization

Ecma TC54 Established specification to digitally transform audit and
attestation workflows.

First working group chartered with holistic

supply chain goals of standardizing core data O June 2023
formats, APIs, and algorithms that advance

software and system transparency. OWASP CycIoneDX v1.5

First specification to support Al Transparency,
O configuration and data components, and
formulation describing how components were
OWASP CycloneDX V1.4 created, tested, trained, evaluated, and deployed.

First specification to introduce vulnerability
sharing and transparency, including Vulnerability O May 2021
Disclosure Reports (VDR) and Vulnerability
Exploitability eXchange (VEX). OWASP CycIoneDX v1.3

First specification to incorporate support for
May 2020 O composition completeness surpassing NTIA's

framing of "known unknowns".

OWASP CycloneDX v1.2

First specification to incorporate SWID (ISO/IEC

19770-2:2015) and services into inventory O March 2019

including data classifications, providers, and

relationships between services and components. OWASP CycloneDX v1.1

First specification with complete pedigree
O support describing component lineage and the
commits, patches, and diffs which make a forked
version unique.

OWASP CycloneDX v1.0

First general-purpose, security-focused Bill of
Materials standard supporting software and
hardware components. Introduced the world to
Package-URL for software security use cases.

Source: https.//tc54.org/history

https://tc54.org/history
https://tc54.org/history

&) owasp

CycloneDX is a modern standard for the software supply chain. At its core, CycloneDX is a general-
purpose Bill of Materials (BOM) standard capable of representing software, hardware, services, and other
types of inventory. CycloneDX is an OWASP flagship project, has a formal standardization process and
governance model through Ecma Technical Committee 54, and is supported by the global information
security community.

CycloneDX formulation provides a universal framework for describing how anything came to be - whether
software, hardware, services, data, algorithms, processes, or even the BOM document itself. The
formulation capability extends the core CycloneDX specification to capture not just what components
exist in a system, but how they were created, manufactured, tested, validated, certified, deployed,
configured, or brought into existence through any process.

Formulation can describe the provenance and manufacturing process for virtually any entity:

e Software Applications: How code was compiled, tested, and packaged
¢ Hardware Components: Manufacturing processes, quality control, and assembly procedures
¢ Services: Deployment, configuration, testing, and operational procedures

¢ Cryptographic Algorithms: Implementation, validation, and compliance testing (e.g. FIPS 140-2,
Common Criteria)

o Data Sets: Collection, curation, transformation, and validation processes
o Infrastructure: Provisioning, configuration, and deployment of systems
o Compliance Artifacts: How certifications, audits, and validations were conducted

o BOM Documents: The tools, processes, and procedures used to generate a BOM

In today's interconnected world, understanding how things come to be is critical across all domains:

e Security Assurance: Verifying that security controls were applied during any creation or validation
process

o Compliance Verification: Demonstrating adherence to regulatory requirements

e Reproducible Processes: Enabling independent verification and reconstruction of any process or
artifact

e Supply Chain Risk Management: Identifying potential weaknesses or vulnerabilities in any
creation, testing, or deployment pipeline

¢ Incident Response: Understanding how compromised or defective components were introduced
into any system

e Quality Assurance: Documenting quality control processes for any type of deliverable

¢ Regulatory Compliance: Meeting documentation requirements across industries

https://tc54.org/

&) owasp

The CycloneDX formulation specification is built on several foundational principles that enable universal
applicability:

Universal Process Capture: The standard ensures comprehensive capture of any creation,
manufacturing, testing, validation, certification, or deployment process, regardless of domain. This
includes everything from software compilation to hardware assembly, service deployment, algorithm
validation, data curation, and compliance certification.

Process Integration: Formulation captures key elements of any systematic process, leveraging patterns
and semantics from workflow management across all domains - whether CI/CD tooling, manufacturing
execution systems, laboratory information management systems, or compliance management platforms.

Compositional Integrity: The design assures that compositional elements, their associations, and
relationships allow for a complete representation of the formulas and processes necessary to enable
repeatable processes with full traceability across any domain.

Standards Compatibility: Formulation information is designed to be compatible with domain-specific
standards and frameworks:

o Software: Supply-chain Levels for Software Assurance (SLSA), NIST Secure Software
Development Framework (SSDF)

e Hardware: IPC standards, ISO 9001

e Cryptography: FIPS 140-2, Common Criteria (ISO/IEC 15408), NIST Post-Quantum
Cryptography

e Healthcare: FDA 21 CFR Part 11, ISO 13485, IEC 62304
e Automotive: ISO 26262, ISO/SAE 21434

e Aerospace: DO-178C, DO-254, AS9100

The Manufacturing Bill of Materials serves as a critical bridge between different aspects of supply chain
security:

o SBOM Integration: Links manufacturing processes to the resulting software components
e SLSA Compliance: Provides detailed build provenance information required for SLSA attestations
o DevSecOps Enablement: Documents security controls integrated into development workflows

e Audit Trail Creation: Maintains comprehensive records for compliance and security audits

&) owasp

The CycloneDX formulation framework describes how something was "formed" or manufactured by
capturing the complete manufacturing process. This includes:

Formulas: High-level descriptions of manufacturing processes that can be applied across different
contexts and environments.

Workflows: Logical phases of the manufacturing process, organized as directed acyclic graphs of
dependent tasks. In CI/CD contexts, workflows correspond to pipelines that execute a series of related
operations.

Tasks: Individual units of work within workflows, each with specific inputs, outputs, and execution steps.
Tasks represent atomic operations like building code, running tests, or deploying artifacts.

Steps: The granular commands and operations executed within tasks, providing the lowest level of detail
about the manufacturing process.

The Manufacturing Bill of Materials supports diverse manufacturing scenarios across different domains:

Software Development (SBOM Integration)

e Describes how software components are built and deployed via CI/CD pipelines
o Captures everything from simple Makefile-based builds to complex multi-tier software systems
e Documents the use of build frameworks, dependency management, and deployment automation
e Supports both traditional and cloud-native development practices
Hardware Manufacturing (HBOM Integration)
e Documents hardware component manufacturing processes
o Captures assembly instructions, quality control procedures, and testing protocols
e Links physical manufacturing to digital twins and simulation models
Machine Learning Operations (MLBOM Integration)
e Describes ML model training, quantization, optimization, and deployment processes
o Captures data preprocessing pipelines, model validation procedures, and inference deployment
e Documents MLOps workflows including model versioning and A/B testing
Data Processing Pipelines
o Describes how data is collected, transformed, enhanced, curated, stored, analyzed, and utilized
o Captures data lineage, processing logic, and quality assurance procedures

o Documents data governance and compliance controls

&) owasp
One of the key architectural decisions in CycloneDX formulation is the separation of
creation/manufacturing information from component inventories. This composability approach offers
several advantages across all domains:

Security Boundaries: Organizations can share component inventories (SBOMs, HBOMs, etc.) with
customers and partners while maintaining strict control over sensitive process details (formulation data).
This separation enables appropriate access controls and information sharing policies across different
stakeholder groups.

Scalability: Large or complex processes can be decomposed into manageable, reusable components
that can be linked and referenced as needed. This applies whether dealing with software builds, hardware
assembly lines, or compliance certification processes.

Flexibility: Different stakeholders can access the level of detail appropriate for their use cases, from high-
level component lists to detailed procedural documentation.

The recommended approach for managing formulation information involves referencing it from the
primary component BOM using CycloneDX's BOM-Link mechanism. This applies universally whether
describing software builds, hardware manufacturing, service deployment, or compliance processes:

"externalReferences": [
{
"type": "formulation",
"url": "https:/ /example.com/mboms/acme-library-1.0.cdx.json",
"hashes": [
{
"alg": "SHA-256",
"content”: "c7beled902fb8dd4d48997c6452f5d7e509fbcdbe2808b16bcf4edce4cO7d14e”
b
1
b
1

This approach enables:

¢ Independent Access Control: Different security policies for inventory vs. process data across all
domains

¢ Modular Management: Separate lifecycle management for different aspects of the BOM
(inventory vs. provenance)

e Reduced Complexity: Smaller, focused documents that are easier to process and validate

e Domain Flexibility: Different formulation documents for different aspects (manufacturing, testing,
deployment, certification)

&) owasp

The CycloneDX Formulation Object Model establishes a comprehensive hierarchy for representing
manufacturing processes. Understanding these relationships is crucial for effective MBOM
implementation.

CycloneDX is able to represent a formulation by providing a means to capture manufacturing processes
using formulas which describe the workflows, tasks, steps and their relationships along with all referenced
resources used during the processes.

The formulation object model, described in this section, is intended to enable the verification of
manufacturing compliance with any requirements or policies for the associated component or product
described by its BOM. Additionally, the level-of-detail that can be represented by the model could
potentially be leveraged to provide enough information to enable independent reproduction of a
component's manufacturing process.

Formulation — Formula — Workflows — Tasks — Steps

This hierarchical structure mirrors real-world manufacturing processes, where high-level formulations
contain specific formulas, which are implemented through workflows containing tasks that execute
specific steps.

The following diagram shows some of the significant objects that are specifically included in the
CycloneDX Formulation Object Model:

Formulas Trigger Runtime Components

Formulation
Workflows Tasks Steps Services

Note: The object diagrams do not show every field that is available for a given object, but only includes
those that are relevant to conveying the relational model.

[bom](root)
+ ... componentobject
+ formulatation: [] formula 1 + type: string
i formula + name: string
+ components[]Jcomponent + ..

+ services: [] service

+ workflows: [] workflow
+ ... service: object

provider: string

name: string
workflowtask

+ tasks:[] task
+ taskDependencies [ldependency
+ ...

e

&) owasp

The formulation attribute of the CycloneDX BOM object can be used to describe the set of processes, as
formula, which detail how the top-level component or service described by the BOM was manufactured.

A formula can describe a set of workflow objects each detailing one or more phases of how the
associated component or service was tested, built, delivered, or deployed as a set of dependent tasks.

The list of workflows which were executed in order to manufacture a BOM's respective component.

Note: In the context of software Continuous Integration and Delivery (CI/CD), workflows may also we
referred to as "pipelines”.

The list of software, hardware or other components that are referenced by one or more formula and its
workflows or tasks which have not been declared elsewhere within the same BOM document.

For example, build frameworks and tools, scanning tools, test tools and their data, runtime hardware, and
software environment information, etc.

Note: Any component referenced by formula must be declared within the same BOM document for the
formula to be considered valid.

The list of services that are referenced by one or more formula and its workflows or tasks which have not
been declared elsewhere within the same BOM document.

For example, services used for security scanning, artifact and data storage, logging, testing, deployment,
etc.

Note: Any service referenced by the formula must be declared within the same BOM document for the
formula to be considered valid.

trigger: object | task: object
| + trigger: trigger

+ taskTypes: [JtaskType

/1 string enum. (e.g., build, test, deliver, etc.)
workspaces [] workspace workspace: object
steps: [Istep + .
inputs: [linputType
outputs: [JoutputType
resourceReferences: [JresourceReferenceChoice
runtimeTopology: dependency

taskType: string

77 500

step: object

4+ 4+ 4+ +

inputType: object

outputType: object

resourceReferenceChoicebject
ar oo

dependency: object
+ i

10

&) owasp

Describes the inputs, sequence of steps and resources used to accomplish a task in order to produce its
outputs.

Note: In the context of software Continuous Integration and Delivery (ClI/CD), tasks are sometimes
referred to as "actions”.

Describes the manual (human) or automated action or event that triggered the task execution (i.e.,
caused its steps to be executed).

Describes the types of tasks, as a list of human-readable, single-word strings, for informational purposes.

The following taskType values are defined:

e copy: A task that copies software or data used to accomplish other tasks in the workflow.

o clone: A task that clones a software repository into the workflow in order to retrieve its source
code or data for use in a build step.

e lint: A task that checks source code for programmatic and stylistic errors.

e scan: A task that performs a scan against source code, or built or deployed components and
services. Scans are typically run to gather or test for security vulnerabilities or policy compliance.

e merge: A task that merges changes or fixes into source code prior to a build step in the workflow.

e build: A task that builds the source code, dependencies and/or data into an artifact that can be
deployed to and executed on target systems.

o test: A task that verifies the functionality of a component or service.
o deliver: A task that delivers a built artifact to one or more target repositories or storage systems.
o deploy: A task that deploys a built artifact for execution on one or more target systems.

o release: A task that releases a built, versioned artifact to a target repository or distribution
system.

e clean: A task that cleans unnecessary tools, build artifacts and/or data from workflow storage.
o other: A workflow task that does not match current task type definitions.

Note: The current set of task types currently favor those that typically appear in modern Continuous
Integration and Continuous Delivery (CI/CD) applications and platforms for software. Future versions of
this specification may add additional task types for other domains.

The list of workspace objects that are associated with the workflow. A workspace is an accepted
abstraction of a filesystem that is shared between tasks and their steps. For example, a workspace can
hold the source for the BOM component being built, the binary produced by a build step, output from
scanning tools, etc.

Describes the sequence of steps, which may include the actual commands, that were executed by the
task.

11

) owasp

Describes references to resources or data made accessible, as input, to the task (and its step's
commands) at runtime by the executor. For example, a configuration file used by a tool.

inputs

Note: the actual configuration file would be declared as a component or externalReference within the task
itself or its parent workflow.

outputs

Describes references to resources or data produced, as output, by the task (and its step's commands).
For example, a log file or metrics data.

Note: the actual log or metrics data files would be declared as components or externalReferences within
the task itself or its parent workflow.

resourceReferences

References to component or service resources that are used to realize the resource instance within the
execution environment. For example, a logging service or artifact storage service reference.

See section resourceReferenceChoice explained for more details on how to specify resource references.

runtimeTopology
A graph of the component runtime topology for workflow's instance.

Workflow relationships

workflowobject

+ tasks: [Jtask
+ taskDependencies: [ldependency // graph of tasks

task: object

dependency: object

i See task object attribute

+ ... —— definitions for those shared by |

i workflow

workflow

A workflow can describe a logical phase of the manufacturing process as a directed acyclic graph of
dependent typed task objects.

The workflow object is a viewed (and can be treated) as a specialized "task" which shares most of the
same attributes or fields as the task object. This allows a workflow to be referenced as a task in another
workflow as part of the taskDependencies graph.

The workflow object uniquely adds the following object attributes described below:

o tasks - see section below for details.
o taskDependencies - see section below for details.

and duplicates the attributes described for the task object, but are instead relative to the workflow as a
whole:

o trigger - for the workflow as a whole.

12

&) owasp

e workspaces - inclusive of all workspaces available, subject to access control, to all tasks in the
workflow.

o taskTypes - inclusive of all tasks listed in the workflow.

e inputs - fo the workflow as a whole which may selectively be provided as inputs to the workflow's
tasks.

e outputs - from the workflow as a whole.

e resourceReferences - made available to the workflow as a whole which may selectively be
referenced to the workflow's tasks.

o runtimeTopology - Please note that in some execution environments, tasks within a workflow may
be configured to run independently in separate runtime environments.

Note: The concept of the workflow object as a "near subclass" of a task object was too complex to map
easily to JSON schema so it is described here.

The list of task objects that contain the the low-level steps or commands

A dependency graph of the tasks for the workflow indicating (observed) execution order.

Note: The task dependency graph should be acyclic and map to the production of one or more output
artifacts

trigger: object
resourceReferences: [] resourceReferenceChoice
event: event
conditions: [Jcondition
inputs: [linputType
outputs: [JoutputType

A+ ++++

resourceReferenceChoice: object i;i

event: object

condition: object
expression: string

+ +

inputType: object

outputType: object

13

&) owasp

Describes a resource that can conditionally activate (or "fire") tasks based upon associated events and
their data. Triggers are a common event-driven concept that can be defined and managed within the
context of typical CI/CD platforms or systems. They enable the conditional execution of associated
workflows or tasks in response to manual or automated events.

Triggers are an important part in understanding the context of why a workflow was run and affirm that any
security and compliance policies were adhered to.

References to component or service resources that are used to instantiate the trigger. These can include
references to component or service resources, apart from the event data, that were used by the trigger to
evaluate conditions (along with inputs) or produce outputs that would be consumed by the associated
task or workflow.

Describes the event data that caused the associated trigger to be executed.

A list of conditions used to determine if a trigger should be activated and cause its associated task or
workflow to be executed. Each condition captures the logical expression, and optionally any interpolated
values, that the execution environment used to evaluate the condition.

Represents resources and data provided to the trigger at runtime by the underlying execution
environment that provide additional information used to evaluate conditions.

Represents resources and data provided by the trigger at runtime to the associate task or workflow.

step: object

+ commands: [Jcommand —
+

command: object

+ executed: string
+

o

O ——

Describes the specific the ordered set of commands executed in order to accomplish its owning task.

A text representation of the executed command. For example, this might be an interpolated shell
command that copied files or ran a tool.

14

workspaceobject
+ resourceReferences: [] resourceReferenceChoice

+ volume: volume
+ ..

P oon

resourceReferenceChoice: object

volume:object

A named, logical resource typically backed by a filesystem or data resource shareable by workflow tasks.
In some cases, these workspaces are implemented with access control to limit access to specific

workflows or tasks.

References to component or service resources that are used to realize the workspace. These could

include references to resources such as storage services.

See section resourceReferenceChoice explained for more details on how to specify resource references.

Information about the actual volume instance, if applicable, allocated to workspace.

inputType: object

source: resourceReferenceChoice
target: resourceReferenceChoice
resource: resourceReferenceChoice
parameters: [Iparameter

environmentVars: [lproperty | [Istring
data: attachment

4+t

resourceReferenceChoicebject
// i.e., for source, target, resource

+ ref: refLinkType | bomLinkElementType
+ extrernalRef: externalReference

parameterobject

.

i

i

. 1 i
name: string i
value: string i
i

i

i

i

i

++ +

datatype: string

property: object

attachment: object

Describes different types of possible inputs to workflows, tasks, triggers and other objects in the model.

18

&) owasp

This type is used to reference one of the CycloneDX types that points to a resource.

Specifically for inputs, they can describe the source of the input data, the target for the input data and/or
a resource that adds additional data to the input.

For example, the source of input data may be the output from a previous task, while conversely the
output of a task can declare its intended target.

A representation of a functional parameter.
A property is a lightweight, name-value pair and defined as part of the core CycloneDX specification.

An attachment Specifies the metadata (e.g., content type, encoding, etc.) and content for an content
data and defined as part of the core CycloneDX specification.

inputType: object
+ source: resourceReferenceChoice
+ target: resourceReferenceChoice . .
+ resource: resourceReferenceChoice resourceReferenceChoicebject
+ parameters: []Jparameter // i.e., for source, target, resource
+ environmentVars: []property | [Istring + ref: refLinkType | bomLinkElementType
+ data: attachment + extrernalRef: externalReference
aF oo o

parameterobject

+ name: string i
+ value: string 3

+ datatype: string

property: object

attachment: object

Describes different types of possible outputs from workflows, tasks, triggers and other objects in the
model.

Most of the object attributes are identical to those described in the inputType relationships section.

16

&) owasp

resourceReferenceChoice: object
+ ref: refLinkType | bomLinkElementType *—-

+ extrernalRef : externalReference !
i refLinkType: object
B
1
1
1
1
1
i
i___ bomLinkElementTypsbject
: + .
1
1
1
i
i___ externalReferencepbbject
+ .

This type is used composite existing CycloneDX reference types allowing different parts of a model to
"point to" resources either defined within other parts with the same BOM document, another BOM or
external to the BOM using a URL.

These include:

e bomLinkElementType - Descriptor for an element in a BOM document. See
https://cyclonedx.org/capabilities/bomlink/.

o refLinkType - Descriptor for an element identified by the attribute bom-ref in the same BOM
document. In contrast to bomLinkElementType.

o externalReference - This type is used to reference a resource external to the current BOM
document using a url.

17

https://cyclonedx.org/capabilities/bomlink/

&) owasp

This example shows how a simple helloworld application's build process can be captured by an MBOM.

The application itself is composed a single "C" source file, helloworld.c, which contains the following code:

#include <stdio.h>

int main() {
printf("Hello, World!\n");
return O;

b

The application is built using the GCC compiler using the following Makefile:

CC = gcc
CFLAGS = -Wall

build: clean hello

hello: helloworld.c
$(CC) $(CFLAGS) -o hello helloworld.c

clean:
rm -f hello

The application can be built by manually running the following command in a terminal/shell of a suitable
operating system:

$ make build

which would cause the Makefile's build target (task) to be executed which would, in turn, case the
dependent clean and hello targets to be executed in order and result in the creation of an executable file
called hello.

When representing the manufacturing process in CycloneDX format, this example assumes:

e The formulation represents a local, manual build process that is executed on a single machine of
source code already cloned from a GitHub repository.

o All referenced "tools" are already installed on the local system.

e For readability, component name values will use "short" names. For example, helloworld.c will be
used instead of a best practice name CycloneDX/MBOM-examples/simple-application-
makefile/helloworld.c; however, the corresponding bom-ref values will be based on the GitHub
repository URL and commit hash to preserve uniqueness of identity.

18

&) owasp

o We will not attempt to encode the non-essential components for the Software Bill-of-Materials
(SBOM) which is better show in other guides. For example use case, the "include" (header) file
stdio.h is not represented.

For effectively conveying the essential representation of the build process using the CycloneDX
Formulation objects, this example will initially focus on capturing only the key build artifacts, tools, and
information. Then, we will show how additional information can be added to encode a more complete
picture of the entire manufacturing process.

In order to simplify the readability of relationships in an MBOM, CycloneDX bom-ref values shown in the
example will take the URI form: "cdx:mbom:<CycloneDX entity name>:uuid:<uuid>" although this is not a
requirement of the CycloneDX Formulation.

This section defines the essential component objects referenced in building the simple application. For
files in this example, we will use the file:// URI scheme with an empty host to reference the local file
system.

The component objects are defined as follows:

e helloworld.c:

"bom-ref": "file:/ / /CycloneDX/MBOM-examples/simple-application-makefile / helloworld.c",
"type": "file",

"name": "helloworld.c”,

"version": "1.0",

"hashes": [
{
"alg": "SHA-256",
“content”: "..."
b
1
b
o Makefile
{
"bom-ref": "file:/ / /CycloneDX/MBOM-examples/simple-application-makefile /Makefile",
"type": "file",

"name": "Makefile",
"version": "1.0",

"hashes": [
{
"alg": "SHA-256",
"content": "..."
Y
1

b

e gcc - GCC compiler

19

&) owasp
{
"bom-ref":

"file:/ / / Applications / Xcode.app/ Contents / Developer/ Toolchains / XcodeDefault.xctoolchain /usr/bin/gcc”,
"type": "application”,
"name": "gcc”,
"version": "16.0.0 (clang-1600.0.26.4)"

+

e make utility

{
"bom-ref":
"file:/ / / Applications / Xcode.app/ Contents / Developer/ Toolchains / XcodeDefault.xctoolchain /usr/bin /make

"type": "application”,
"name": "GNU Make",
"version": "3.81"

b

Event-Trigger relationship

This section describes how the human action make build can be represented in event and trigger data
structures as shown here:

trigger

“timeActivated” : “ 20250101T14:00:00+00:00

“bomref": "cdx:mbom:trigger:uuid:1a9b...",
BRI “uid": "uuid:1a9b...",

{ “type": "manual",

“timestamp” “ 2025 01-01T14:00:00+00:00",
“name”: “make build”,
“description”: “Command line build”

“name": "make trigger",
“description": "Bash, command - line build
trigger”,

} “event”: {
// event content goes her e

/
Y

¢

i }
! ,

$ make build }

Event

In all cases, workflows are triggered by some sort of explicit, human or automated event. In this example,
a person manually executed the following command in a Bash command prompt:

make build

this event could be represented as follows:

timestamp: “2025-01-01T14:00:00+00:00",
name: “make build”,
description: “Command line build”

Note: Workflows may be triggered by events dynamically received from other systems or services. In
these cases, the event could include the raw event data itself as well as information.about the source
system or service the event was sent by.

Trigger

The trigger provides context about an event, as well as describing any additional information or resources
used to augment an event before "triggering" an associated workflow. For this use case, the event and

20

&) owasp

trigger represents a "manual" event type with a clear name and identifier (i.e., a uid) along with a more
detailed description.

This could be represented as follows:

“timeActivated”: “2025-01-01T14:00:00+00:00”,

“bom-ref": "cdx:mbom:trigger:uuid:1a9b...",

“uid”: "uuid:1a9b...",
“type”: "manual”,
“name"”: "make trigger",

“description”: "Bash, command-line build trigger”
“event”: {
// event content goes here

oy

Note: In this simple example, the trigger directly represents the event itself so the event's timestamp value
is the same as the trigger's timeActivated value. However, in more complex event-driven build systems,
the trigger represents a separable action subject to external rules such that the event timestamp value
would reflect an earlier date-time than the trigger's timestamp value.

trigger

{

“timeActivated”: “20250101T14:00:00+00:00",

“bormref": "cdx:mbom:trigger:uuid:1a9b...",

“uid": "uuid:1a9b...",

“type": "manual",

“name": "make trigger",

“description": "Bash, command - line build trigger”,
}

workflow task
{ {
“borref": "cdx:mbom:workflow:uuid:431f...", “boraref": "cdx:mbom:task:uuid:dbb6...",
“uid": "uuid:431f...", “uid": "uuid:dbb6...",
“taskTypes”: [“clean”, “build"], “taskTypes”: [“clean”, “build"],
“tasks”: [{ “inputs”: [..],
// task content goes here “outputs”: [..],
} "steps": [{
1, "name": "run make build",
“taskDependencies”: [{ | "commands": [{
“ref”: “ cdx:mbom:task:uuid:dbb6... \ "executed": "make build”
} }
I; 1
“trigger”: { 1,
// trigger content goes here
B }
“resourceReferences”: [...],

“runtimeTopology”: [..],

21

&) owasp

In this example, there is only one logical "task"; that is, the build process initiated by the make build
command step. This task itself can be represented as:

"bom-ref": "cdx:mbom:task:uuid:dbb6c5c0-6958-4a18-ac67-d897dbee76b6",
"uid": "uuid:dbb6c5c0-6958-4a18-ac67-d897dbee76b6",
"taskTypes": ["clean", "build"],

": "make build task",

"name":
"description”: "A task that captures 'make build' step.",

As you can see we provide the two logical taskType values of clean and build to represent the logical
steps the make command would perform as a result of resolving the target dependencies within the
Makefile.

The single command-line, build step can be added to the task:

"bom-ref": "cdx:mbom:task:uuid:dbbé....",
"uid": "uuid:dbbs...",
"name": "make build task",
"steps": [
{
"name": "run make build",
"commands": [

{

"executed": "make build"

The trigger defined previously can be added to the task as follows:

{
"bom-ref": "cdx:mbom:task:uuid:dbbé....",
"uid": "uuid:dbbé6...",
"name": "make build task",
"trigger”: {
"bom-ref": "cdx:mbom:trigger:uuid:1a9b...",
"uid": "uuid:1a9b....",
"type": "manual”,
"name": "make trigger”,
"description”: "Bash, command-line build trigger",
8
b

22

&) owasp

In this example, the workflow represents the single task execution as follows:

“bom-ref": "cdx:mbom:workflow:uuid:431ff656-8f90-410b-a614-c3916b842036",
“uid": "uuid:431ff656-8f90-410b-a614-c3916b842036",
“taskTypes”: [“clean”, “build”],
“tasks™: [

// task goes here
1
“taskDependencies”: [

{

“ref”: “cdx:mbom:task:uuid:dbbé..."

b
1
“trigger”: {

// trigger goes here
“resourceReferences”™ [...],
“runtimeTopology”: [...],

bom formula
{ (component

"bomFormat": "CycloneDX", components: [{ .)
"specVersion": "1.6", // component content goes here "bomref": "file:///.../Makefile",
"serialNumber": "urn:uuid:2820...", 1. “type": "file",
"metadata": { workflows: ["name": "Makefile",

"component": { /I workflow content goes here e

"type": "application”, 1 }
"name": "simple-application", }

h

0) workflow
"formulation: [{ {

f | tent h
} W imE EESEEE UL “boraref": "cdx:mbom:workflow:uuid:431f...",
] “uid": "uuid:431f...",
“taskTypes”: [“clean”, “build"],
1 “tasks ":[...],
“taskDependencies:[...],
“trigger”: {...},
}

The formulafor building this example application, in addition to describing the single workflow for this
example, also includes the full listing (or manifest) of resources referenced by the workflow and its task.
These elements can be represented as follows:

{
components: [
// component content goes here
],
workflows: [
// workflow content goes here
]
b

23

&) owasp

and finally the formula is placed under the CycloneDX BOM's formulation keyname of the Software Bill of
Materials (SBOM):

"bomFormat": "CycloneDX",
"specVersion": "1.7",
"serialNumber": "urn:uuid:2820...",
"metadata”: {
"component": {
"type": "application”,
"name": "simple-application”,

},...
}...

"formulation: [{
// formula content goes here
b
],

In our example, we chose to list components used to build the application under the formula keyname.
However, it is possible to instead list them under the top-level components array's keyname.

This choice was made since this allows the MBOM information to be separated into a separate document
from the associated SBOM and linked via the CycloneDX BOM-Link_capability. This would be
accomplished in the same manner as described for separating vulnerability information using the
CycloneDX Vulnerability Disclosure Report (VDR) capability.®

For many security and compliance use cases, it is necessary to represent the runtime topology (i.e., the
build or manufacturing platform) of a software application and allowing independent verification the
process is repeatable. This section shows how to add some of this information to the MBOM for this
example.

24

https://cyclonedx.org/capabilities/bomlink/
https://cyclonedx.org/capabilities/vdr/

Runtime topology

workflow
component

“bomref": Ilb fll. n ﬁl .///b' /b h n
"cdx:mbom:workflow:uuid:431f...", "t;pr:'l:?"ﬁlatfor?ﬁ" in/bas '
uid": "uuid:431f...", "name": "GNU bash",
“FIREMETEPIeaY": ": [{) version": "3.2.57(1)...

“ref”: “ file:///binfbash "

"dependsOn” :[{

"ref”: “ urn:cdx:os://macosx...”

} I component
“ref”: “ Urnicdx:o0s://macosx ...” “boraref": " urn:cdx:os://macosx ...",
"dependsOn” :[{ :type":""cl)lperatin? -system",

"ref”: “ urn:cdx:device:sn:...” RS CEN nl’llacOS ' .
L version": "14.6.1+23G93
) }
{
“ref”: “ urn:cdx:device :sn:...”,
)
1 component
{
} "bormaref": " Urn:cdx:device:sn: |...

"type": "device",

"name": "Matt's MacBook Pro",

"description": "Apple M3 Max..."”
}

The runtime topology represents any software frameworks, platforms, tools, hardware and other
resources used to create the software application used to run the workflow and its tasks.

This section will show how to represent the runtime topology for the simple application's build process
which includes a Bash shell running on a Mac OS X machine.

Platform

For this example, we can choose to represent the key platform elements used to run the make command.
This could include the shell and the operating system used to run the build process as CycloneDX
components. For example:

e The Bash shell used to run the make command:

"bom-ref": "file:// /bin/bash",
"type": "platform”,
"name": "GNU bash",

"version": "3.2.57(1)-release (armé64-apple-darwin23)"

e The OS X operating system the Bash terminal was running on:

{
"bom-ref": "urn:cdx:os://macosx@14.6.1+23G93",
"type": "operating-system”,
"name": "macOS",

25

&) owasp

\ "version": "14.6.1+23G93"
| 2

Additionally, we could describe the actual device used for the build process to an appropriate level of
detail:

e Mac OS X machine

"bom-ref": "urn:cdx:device:sn:CBFX71DM3",
"type": "device",

"name": "Matt's MacBook Pro",
"description”: "Apple M3 Max, 16 inch"

It is envisioned that Software-Bill-of-Materials (SBOM) will be created as part of the build process
including Manufacturing (MBOM) information. This could be reflected as a post-build target in the
Makefile which would bring additional SBOM generation tooling into the manufacturing process itself and
be reflected in the SBOM/MBOM document as well.

e Formulation - Describes the set of processes, for how a component or service was
manufactured, tested, delivered and/or deployed. These processes are captured as formula
which describe the workflows, tasks and steps along with components and services used
(observed) in those processes.

o Workflow - Workflows are used to manage repetitive processes and tasks that occur in a
particular order. In the context of Continuous Integration and Continuous Delivery (CI/CD)
pipelines, workflows are used to define the sequence of steps that need to be executed in order
to build, test, and deploy an application. Workflows can be defined using various tools such as
Jenkins, Tekton, or CircleCl.

26

&) owasp

Appendix B: References

The following resources may be useful to users and adopters of this standard:

o Package-URL specification: https://github.com/package-url/purl-spec/

o Specifically, the pURL types reference in examples:

= github

o Example: pkg:github/package-url/purl-
spec@244fd47e07d1004#everybody/loves/dogs

= golang
o Example:pkg:golang/github.com/gorilla/context@234fd47e07d1004f0a
ed9ct#api
= huggingface

o Example: pkg:huggingface/microsoft/deberta-v3-
base@559062ad13d311b87b2c455e67dcd5f1¢c8f651117?repository_ur
I=https://hub-ci.huggingface.co
References in examples

e gcc https://gcc.gnu.org/

e Tekton https://tekton.dev/

e SPDX License IDs

e SPDX License List

e OpenChain
e OWASP CycloneDX

o OWASP CycloneDX Tool Center

o OWASP CycloneDX BOM Repository Server

e OWASP Dependency-Track

e OWASP Software Component Verification Standard (SCVS)

o OWASP Software Component Verification Standard (SCVS) BOM Maturity Model

27

https://github.com/package-url/purl-spec/
https://github.com/package-url/purl-spec/
https://github.com/package-url/purl-spec/blob/master/PURL-TYPES.rst#github
https://github.com/package-url/purl-spec/blob/master/PURL-TYPES.rst#golang
https://github.com/package-url/purl-spec/blob/master/PURL-TYPES.rst#huggingface
https://gcc.gnu.org/
https://gcc.gnu.org/
https://tekton.dev/
https://tekton.dev/
https://spdx.dev/ids/
https://spdx.org/licenses/
https://www.openchainproject.org/
https://cyclonedx.org/
https://cyclonedx.org/tool-center/
https://github.com/CycloneDX/cyclonedx-bom-repo-server
https://dependencytrack.org/
https://scvs.owasp.org/
https://scvs.owasp.org/bom-maturity-model/

*)ownAsp

Copyright © OWASP Foundation

