
Implement Cryptography Bill of Materials
for Post-Quantum Systems and Applications

Guide to CBOM
Authoritative

Table of Contents

About the Guide ...2
Copyright and License ...2

PREFACE ... 3

THE INNOVATIVE HISTORY OF OWASP CYCLONEDX ... 4

INTRODUCTION ... 5

CBOM Design ..5

USE CASES .. 7

Cryptography Asset Management ..7
Identifying Weak Cryptographic Algorithms ..7
Post-Quantum Cryptography (PQC) Readiness ...7
Assess Cryptographic Policies and Advisories ...8
Identify Expiring and Long-Term Cryptographic Material ..8
Ensure Cryptographic Certifications ...8

ANATOMY OF A CBOM ... 9

Structure and Cryptographic Asset Types ..9
Key Management ...11
Intersection of Key Management States and Lifecycle Phases ...12

PRACTICAL EXAMPLES .. 14

Algorithm ...14
Key ..15
Protocol ...16
Certificate ..19

DEPENDENCIES ... 20

DECOUPLING CBOM FROM SBOM WITH BOM-LINK .. 22

ATTESTATIONS .. 23

Cryptography Standards ..23

 2

About the Guide

CycloneDX is a modern standard for the software supply chain.

The content in this guide results from continuous community feedback and input from leading experts in

the software supply chain security field. This guide would not be possible without valuable feedback from

the CycloneDX Industry Working Group (IWG), the CycloneDX Core Working Group (CWG), the many

CycloneDX Feature Working Groups (FWG), Ecma International Technical Committee 54, and a global

network of contributors and supporters.

Copyright and License

Copyright © 2024 The OWASP Foundation.

This document is released under the Creative Commons Attribution 4.0 International. For any reuse or

distribution, you must make clear to others the license terms of this work.

Portions of this guide were contributed by IBM under the Apache License Version 2.0.

First Edition, 09 April 2024

Version Changes Updated On Updated By

First Edition Initial Release 2024-04-09 CycloneDX Feature Working Group on Cryptography

https://creativecommons.org/licenses/by/4.0/

 3

Preface

Welcome to the Authoritative Guide series by the OWASP Foundation and OWASP CycloneDX. In this

series, we aim to provide comprehensive insights and practical guidance, ensuring that security

professionals, developers, and organizations alike have access to the latest best practices and

methodologies.

At the heart of the OWASP Foundation lies a commitment to inclusivity and openness. We firmly believe

that everyone deserves a seat at the table when it comes to shaping the future of cybersecurity

standards. Our collaborative model fosters an environment where diverse perspectives converge to drive

innovation and excellence.

In line with this ethos, the OWASP Foundation has partnered with Ecma International to create an

inclusive, community-driven ecosystem for security standards development. This collaboration empowers

individuals to contribute their expertise and insights, ensuring that standards like CycloneDX reflect the

collective wisdom of the global cybersecurity community.

One standout example of this model is OWASP CycloneDX, which is on track to becoming an Ecma

International standard through Technical Committee 54 (TC54). By leveraging the strengths of both

organizations, CycloneDX is poised to become a cornerstone of security best practices, providing

organizations with a universal standard for software and system transparency.

As you embark on your journey through this Authoritative Guide, we encourage you to engage actively

with the content and join us in shaping the future of cybersecurity standards. Together, we can build a

safer and more resilient digital world for all.

Andrew van der Stock

Executive Director, OWASP Foundation

 4

The Innovative History of OWASP CycloneDX

OWASP CycloneDX has carved a legacy steeped in innovation, collaboration, and a commitment to

openness. OWASP continues to advance software and system transparency standards, prioritizing

capabilities that facilitate risk reduction.

Source: https://tc54.org/history

https://tc54.org/history
https://tc54.org/history

 5

Introduction

A Cryptography Bill of Materials (CBOM) is an object model to describe cryptographic assets and their

dependencies. Support for CBOM is included in CycloneDX v1.6 and higher. Discovering, managing, and

reporting on cryptographic assets is necessary as the first step on the migration journey to quantum-safe

systems and applications. Cryptography is typically buried deep within components that are used to

compose and build systems and applications. It makes sense to minimize this effort through alignment

and reuse of concepts and components used to implement the Software Supply Chain Security (SSCS).

Advances in quantum computing introduce the risk of previously-secure cryptographic algorithms

becoming compromised faster than ever before. In May of 2022, the White House released a National

Security Memorandum outlining the government’s plan to secure critical systems against potential

quantum threats. This memorandum contains two key takeaways for both agency and commercial

software providers: document the potential impact of a breach, and have an alternative cryptography

solution ready.

As cryptographic systems evolve from using classical primitives to quantum-safe primitives, there is

expected to be more widespread use of cryptographic agility, or the ability to quickly switch between

multiple cryptographic primitives. Cryptographic agility serves as a security measure or incident response

mechanism when a system’s cryptographic primitive is discovered to be vulnerable or no longer complies

with policies and regulations.

As part of an agile cryptographic approach, organizations should seek to understand what cryptographic

assets they are using and facilitate the assessment of the risk posture to provide a starting point for

mitigation. CycloneDX designed CBOM for this purpose.

CBOM Design

The overall design goal of CBOM is to provide an abstraction that allows modeling and representing

cryptographic assets in a structured object format. This comprises the following points.

1. Modelling cryptographic assets Cryptographic assets occur in several forms. Algorithms and

protocols are most commonly implemented in specialized cryptographic libraries. They may,

however, also be 'hardcoded' in software components. Certificates and related cryptographic

material like keys, tokens, secrets, or passwords are other cryptographic assets to be modeled.

2. Capturing cryptographic asset properties Cryptographic assets have properties that uniquely

define them and that make them actionable for further reasoning. For example, it makes a

difference if one knows the algorithm family (e.g. AES) or the specific variant or instantiation (e.g.

AES-128-GCM). This is because the security level and the algorithm primitive (authenticated

encryption) are only defined by the definition of the algorithm variant. The presence of a weak

cryptographic algorithm like SHA1 vs. HMAC-SHA1 also makes a difference. Therefore, the goal

of CBOM is to capture relevant cryptographic asset properties.

3. Capturing crypto asset dependencies To understand the impact of a cryptographic asset, it is

important to capture its dependencies. Cryptographic libraries 'implement' certain algorithms and

protocols, but their implementation alone does not reflect their usage by applications. CBOM,

therefore, differentiates between 'implements' and 'uses' dependencies. It is possible to model

algorithms or protocols that use other algorithms (e.g., TLS 1.3 uses ECDH/secp256r1), libraries

that implement algorithms, and applications that 'use' algorithms from a library.

4. Applicability to various software components CycloneDX supports various components such as

applications, frameworks, libraries, containers, operating systems, devices, firmware, and files.

CBOM extends this model and can communicate a component's dependency on cryptographic

assets.

https://www.whitehouse.gov/briefing-room/statements-releases/2022/05/04/national-security-memorandum-on-promoting-united-states-leadership-in-quantum-computing-while-mitigating-risks-to-vulnerable-cryptographic-systems/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/05/04/national-security-memorandum-on-promoting-united-states-leadership-in-quantum-computing-while-mitigating-risks-to-vulnerable-cryptographic-systems/

 6

5. High compatibility to CycloneDX SBOM and related tooling CBOM is native to the CycloneDX

standard. It integrates cryptographic assets as an additional component type in the CycloneDX

schema and further extends dependencies with the ability to specify dependency usage and

implementation details. CBOM data can be present in existing SBOMs or externalized into

dedicated CBOMs, thus creating modularity, which may optionally have varying authentication

and authorization requirements.

6. Enable automatic reasoning CBOM enables tooling to reason about cryptographic assets and

their dependencies automatically. This allows checking for compliance with policies that apply to

cryptographic use and implementation.

 7

Use Cases

Cryptography Asset Management

The Cryptography Bill of Materials (CBOM) is a comprehensive inventory of cryptographic assets,

encompassing keys, certificates, tokens, and more. This is a requirement of the OMB M-23-02, where

such a system is characterized as a [...”software or hardware implementation of one or more

cryptographic algorithms that provide one or more of the following services: (1) creation and exchange of

encryption keys; (2) encrypted connections; or (3) creation and validation of digital signatures.”]

CBOM provides a structured framework for organizations to catalog and track their cryptographic

resources, facilitating efficient management and ensuring security and compliance standards are met. By

maintaining a detailed record of cryptographic assets, including their usage, expiration dates, and

associated metadata, CBOM enables proactive monitoring and streamlined auditing processes. With

CBOM, organizations can effectively safeguard their cryptographic infrastructure, mitigate risks

associated with unauthorized access or misuse, and maintain the integrity and confidentiality of sensitive

data across diverse digital environments.

Identifying Weak Cryptographic Algorithms

CBOM enables organizations to conduct thorough assessments and discover weak algorithms or flawed

implementations that could compromise security. Through analysis of CBOM data, including

cryptographic algorithms, key management practices, and usage patterns, organizations can pinpoint

areas of concern and prioritize remediation efforts. CBOM facilitates proactive identification of

weaknesses and vulnerabilities, allowing organizations to enhance the resilience of their cryptographic

infrastructure and mitigate the risk of exploitation, thereby bolstering overall cybersecurity posture and

safeguarding sensitive data against potential threats.

Post-Quantum Cryptography (PQC) Readiness

CBOM is crucial in preparing applications and systems for an impending post-quantum reality, aligning

with guidance from the National Security Agency (NSA) and the National Institute of Standards and

Technology (NIST). As quantum computing advancements threaten the security of current cryptographic

standards, CBOM provides a structured approach to inventorying cryptographic assets and evaluating

their resilience against quantum threats.

Most notably, public key algorithms like RSA, DH, ECDH, DSA or ECDSA are considered not quantum-

safe. These algorithms occur in various components and may be hardcoded in applications but are more

commonly and preferably used via dedicated cryptographic libraries or services. Developers often don’t

directly interact with cryptographic algorithms such as RSA or ECDH but use them via protocols like TLS

1.3 or IPsec, by using certificates, keys, or other tokens. With upcoming cryptographic agility it becomes

less common to put in stone (or software) the algorithms that will be used. Instead, they are configured

during deployment or negotiated in each network protocol session. CBOM is designed with these

considerations in mind and to allow insight into the classical and quantum security level of cryptographic

assets and their dependencies.

By cataloging cryptographic algorithms and their respective parameters, CBOM enables organizations to

identify vulnerable or weak components that require mitigation or replacement with quantum-resistant

alternatives recommended by NSA and NIST. Through comprehensive analysis and strategic planning

facilitated by CBOM, organizations can proactively transition to post-quantum cryptographic primitives,

ensuring the long-term security and integrity of their systems and applications.

https://www.whitehouse.gov/wp-content/uploads/2022/11/M-23-02-M-Memo-on-Migrating-to-Post-Quantum-Cryptography.pdf

 8

Assess Cryptographic Policies and Advisories

A cryptographic inventory in machine-readable form like CBOM brings benefits if one wants to check for

compliance with cryptographic policies and advisories. An example of such an advisory is CNSA 2.0,

which was announced by NSA in September of 2022. CNSA 2.0 states, among other things, that National

Security Systems (NSS) for firmware and software signing needs to support and prefer CNSA 2.0

algorithms by 2025 and exclusively use them by 2030. The advised algorithms are the stateful hash-

based signature schemes LMS and XMSS from NIST SP 800-208. With a CBOM inventory that

documents the use of LMS and XMSS by such systems, compliance with CNSA 2.0 can be assessed in

an automated way.

Identify Expiring and Long-Term Cryptographic Material

An RSA certificate expiring in one week poses less cryptographic risk than the same certificate expiring in

20 years. Service downtime due to an expired certificate is another risk to be considered. Therefore, we

argue that an inventory that captures the life cycle of cryptographic material as allowed by CBOM gives

context to an inventory that is instrumental for managing cryptographic risk.

Ensure Cryptographic Certifications

Higher cryptographic assurance is provided by certifications such as FIPS 140-3 (levels 1 to 4) or

Common Criteria (EAL1 to 7). To obtain these certifications, cryptographic modules need to undergo

certification processes. For regulated environments such as FedRAMP, such certifications are important

requirements. CBOM allows the capture of certification levels of cryptographic assets so that this

property can be easily identified.

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
https://csrc.nist.gov/pubs/fips/140-3/final
https://www.commoncriteriaportal.org/

 9

Anatomy of a CBOM

The Cryptography Bill of Materials (CBOM) presents a structured approach to inventory management of

cryptographic assets, leveraging the CycloneDX component model to comprehensively represent a

diverse array of cryptographic assets. CBOM is implemented within the CycloneDX object model,

facilitating the standardized representation of cryptographic assets, including algorithms, keys, protocols,

and certificates. The CycloneDX object model provides a flexible and extensible framework that

accommodates the complexity and diversity of cryptographic infrastructure.

Structure and Cryptographic Asset Types

CycloneDX can represent the following types of cryptographic assets:

Type Description

algorithm Cryptographic function commonly used for data encryption, authentication, and

digital signatures or other primitives.

certificate An electronic document that provides the identity or validates a public key.

protocol A set of rules and guidelines that govern the behavior and communication with each

other.

private-key The confidential key of a key pair used in asymmetric cryptography.

public-key The non-confidential key of a key pair used in asymmetric cryptography.

secret-key A key used to encrypt and decrypt messages in symmetric cryptography.

 10

Type Description

key A piece of information, usually an octet string, which, when processed through a

cryptographic algorithm, processes cryptographic data.

ciphertext The result of encryption performed on plaintext using an algorithm (or cipher).

signature A cryptographic value that is calculated from the data and a key known only by the

signer.

digest The output of the hash function.

initialization-

vector

A fixed-size random or pseudo-random value used as an input parameter for

cryptographic algorithms.

nonce A random or pseudo-random number that can only be used once in a cryptographic

communication.

seed The input to a pseudo-random number generator. Different seeds generate different

pseudo-random sequences.

salt A value used in a cryptographic process, usually to ensure that the results of

computations for one instance cannot be reused by an attacker.

shared-secret A piece of data known only to the parties involved, in a secure communication.

tag A message authentication code (MAC), sometimes known as an authentication tag,

is a short piece of information used for authenticating and integrity-checking a

message.

additional-data An unspecified collection of data with relevance to cryptographic activity.

password A secret word, phrase, or sequence of characters used during authentication or

authorization.

credential Establishes the identity of a party to communication, usually in the form of

cryptographic keys or passwords.

token An object encapsulating a security identity.

other Another type of cryptographic asset.

unknown The type of cryptographic asset is not known.

 11

Key Management

NIST Special Publication 800-57 outlines key management guidelines, including various key states and

their purposes. The key states defined in SP 800-57 include:

1. Pre-activation: Keys in this state are generated but not yet placed into active use. They are

securely stored until needed, awaiting activation for cryptographic operations.

2. Active: Keys in the active state are currently in use for cryptographic operations such as

encryption, decryption, or digital signatures. They play a fundamental role in securing data and

communications within the system.

3. Suspended: Keys in the suspended state are temporarily inactive, typically due to security

concerns or operational issues. While suspended, they are not utilized for cryptographic

operations but can be reinstated if deemed appropriate.

4. Deactivated: Keys in the deactivated state are intentionally rendered inactive, often as part of

routine maintenance or security protocols. Once deactivated, they are no longer used for

cryptographic operations but may be retained for archival or auditing purposes.

5. Compromised: Keys in the compromised state are deemed untrustworthy due to known or

suspected security breaches. Immediate action is required to revoke and replace compromised

keys to prevent unauthorized access and safeguard the integrity of cryptographic operations.

6. Destroyed: Keys in the destroyed state are permanently eradicated from the system, typically to

prevent any potential misuse or unauthorized access. Destruction ensures that the keys are

irrecoverable and cannot be compromised, thus enhancing overall security.

These key states play a critical role in the lifecycle management of cryptographic keys, ensuring that keys

are properly managed, secured, and monitored throughout their operational lifespan, thereby maintaining

the integrity and confidentiality of sensitive data and systems.

CycloneDX fully supports key states as detailed in the example below:

"cryptoProperties": {
 "assetType": "related-crypto-material",
 "relatedCryptoMaterialProperties": {
 "type": "private-key",
 "state": "compromised",
 ...
 }
}

https://csrc.nist.gov/pubs/sp/800/57/pt1/r5/final

 12

Intersection of Key Management States and Lifecycle Phases

As outlined in the CycloneDX Authoritative Guide to SBOM, CycloneDX supports lifecycles that

encompass those in the Software Development Life Cycle (SDLC) and those commonly used in Software

Asset Management (SAM). CycloneDX lifecycle phases can be used together with the key management

states defined by NIST to help identify and prevent risks associated with compromised keys and

operational anomalies.

CycloneDX defines the following phases:

Phase Description

Design BOM produced early in the development lifecycle containing an inventory of

components and services that are proposed or planned to be used. The inventory

may need to be procured, retrieved, or resourced prior to use.

Pre-build BOM consisting of information obtained prior to a build process and may contain

source files, development artifacts, and manifests. The inventory may need to be

resolved and retrieved prior to use.

Build BOM consisting of information obtained during a build process where component

inventory is available for use. The precise versions of resolved components are

usually available at this time as well as the provenance of where the components

were retrieved from.

Post-build BOM consisting of information obtained after a build process has completed and the

resulting components(s) are available for further analysis. Built components may exist

as the result of a CI/CD process, may have been installed or deployed to a system or

device, and may need to be retrieved or extracted from the system or device.

Operations BOM produced that represents inventory that is running and operational. This may

include staging or production environments and will generally encompass multiple

SBOMs describing the applications and operating system, along with HBOMs

describing the hardware that makes up the system. Operations Bill of Materials

(OBOM) can provide a full-stack inventory of runtime environments, configurations,

and additional dependencies.

Discovery BOM consisting of information observed through network discovery providing point-

in-time enumeration of embedded, on-premise, and cloud-native services such as

server applications, connected devices, microservices, and serverless functions.

Decommission BOM containing inventory that will be or has been retired from operations.

Key management states, as defined in NIST SP 800-57, offer a structured framework for managing

cryptographic keys throughout their lifecycle. These states—such as pre-activation, active, suspended,

deactivated, compromised, and destroyed—align closely with the lifecycle phases defined in CycloneDX.

By integrating key management states with CycloneDX lifecycle phases, organizations gain a

comprehensive understanding of the security posture of their cryptographic assets and can identify

potential risks more effectively.

https://cyclonedx.org/guides/

 13

Manage Keys From Inception

In the CycloneDX lifecycle, the "Design" and "Pre-build" phases correspond to the pre-activation state in

key management. During development, cryptographic keys are generated but not yet put into active use.

By linking pre-activation with these phases, organizations can ensure that cryptographic keys are

securely managed from their inception, minimizing the risk of unauthorized access or compromise before

deployment.

Anomaly Detection

As software progresses to the "Build" and "Post-build" phases in CycloneDX, cryptographic keys transition

into the active state, where they are utilized for encryption, decryption, or digital signatures. Integration

with key management states allows organizations to monitor the active keys' security status and detect

anomalies that may indicate compromise or unauthorized usage, thereby mitigating potential risks during

the software development lifecycle.

During the "Operations" phase in CycloneDX, cryptographic keys may undergo transitions such as

suspension or deactivation if security concerns arise. For example, if a vulnerability is discovered in a

cryptographic algorithm, keys associated with that algorithm may be suspended or deactivated to prevent

exploitation. By correlating these transitions with the CycloneDX lifecycle, organizations can promptly

respond to security incidents and mitigate associated risks, ensuring the integrity and confidentiality of

cryptographic operations across deployment environments.

Furthermore, the compromised and destroyed states in key management align with the "Decommission"

phase in CycloneDX. When cryptographic keys reach the end of their operational lifespan, they are

revoked, destroyed, or securely decommissioned to prevent unauthorized access. CycloneDX facilitates

the documentation of these actions, providing a comprehensive audit trail of key management activities

and ensuring regulatory compliance.

Any deviances from expected lifecycle mappings to key management states should be investigated.

Prevention of Compromised Keys During Build or Deployment

The compromised key management state is crucial in preventing software supply chain attacks when

integrated into the "Build" lifecycle phase in CycloneDX. During the build phase, cryptographic keys are

utilized to sign software artifacts, ensuring their authenticity and integrity. By leveraging the

"compromised" state within CycloneDX, organizations can detect compromised keys promptly and

prevent unauthorized usage during the build process. For instance, if a key used for code signing is

compromised, CycloneDX metadata can flag the key as compromised, triggering automated processes

to revoke its access privileges and prevent its use in signing software artifacts. This proactive approach

mitigates the risk of adversaries leveraging compromised keys to inject malicious code into the software

supply chain, enhancing the security and trustworthiness of software builds distributed to consumers.

By leveraging key management states within the CycloneDX lifecycle phases, organizations can enhance

their risk management practices, proactively identify security vulnerabilities, and maintain the integrity of

cryptographic operations throughout the software development lifecycle. This integrated approach

enables organizations to safeguard sensitive data and mitigate potential risks associated with

cryptographic assets.

 14

Practical Examples

Examples of assets typically cataloged within a CBOM include algorithms, keys, protocols, and

certificates, each with associated metadata crucial for effective management and security. Algorithms

refer to the mathematical functions utilized for encryption, hashing, and digital signatures, while keys

encompass cryptographic keys used for encryption, decryption, and authentication. Protocols delineate

the rules and procedures governing secure communication between entities, and certificates

authenticate the identities of entities within a cryptographic system. Associated CBOM metadata includes

details such as algorithm versions, key lengths, protocol configurations, and certificate attributes,

providing comprehensive insights necessary for the management and security of cryptographic assets.

Algorithm

A cryptographic algorithm is added in the components array of the BOM. The examples below list the

algorithm AES-128-GCM and SHA512withRSA.

"components": [
 {
 "type": "cryptographic-asset",
 "name": "AES-128-GCM",
 "cryptoProperties": {
 "assetType": "algorithm",
 "algorithmProperties": {
 "primitive": "ae",
 "parameterSetIdentifier": "128",
 "mode": "gcm",
 "executionEnvironment": "software-plain-ram",
 "implementationPlatform": "x86_64",
 "certificationLevel": ["none"],
 "cryptoFunctions": ["keygen", "encrypt", "decrypt", "tag"],
 "classicalSecurityLevel": 128,
 "nistQuantumSecurityLevel": 1
 },
 "oid": "2.16.840.1.101.3.4.1.6"
 }
 },
 {
 "name": "SHA512withRSA",
 "type": "cryptographic-asset",
 "cryptoProperties": {
 "assetType": "algorithm",
 "algorithmProperties": {
 "primitive": "signature",
 "parameterSetIdentifier": "512",
 "executionEnvironment": "software-plain-ram",
 "implementationPlatform": "x86_64",
 "certificationLevel": ["none"],
 "cryptoFunctions": ["sign", "verify"],
 "nistQuantumSecurityLevel": 0
 },
 "oid": "1.2.840.113549.1.1.13"
 }
 }
]

A complete example can be found at https://cyclonedx.org/shortcut/example/algorithm

https://cyclonedx.org/shortcut/example/algorithm
https://cyclonedx.org/shortcut/example/algorithm

 15

An example with the QSC Signature algorithm Dilithium5 is listed below.

"components": [{
 "name": "Dilithium5",
 "type": "cryptographic-asset",
 "cryptoProperties": {
 "assetType": "algorithm",
 "algorithmProperties": {
 "primitive": "signature",
 "executionEnvironment": "software-plain-ram",
 "implementationPlatform": "x86_64",
 "certificationLevel": ["none"],
 "cryptoFunctions": ["keygen", "sign", "verify"],
 "nistQuantumSecurityLevel": 5
 },
 "oid": "1.3.6.1.4.1.2.267.7.8.7"
 }
 }]

Key

The following example demonstrates how an RSA-2048 public key can be included in a CBOM.

"components": [{
 "name": "RSA-2048",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/key/rsa-2048@1.2.840.113549.1.1.1",
 "cryptoProperties": {
 "assetType": "related-crypto-material",
 "relatedCryptoMaterialProperties": {
 "type": "public-key",
 "id": "2e9ef09e-dfac-4526-96b4-d02f31af1b22",
 "state": "active",
 "size": 2048,
 "algorithmRef": "crypto/algorithm/rsa-2048@1.2.840.113549.1.1.1",
 "securedBy": {
 "mechanism": "Software",
 "algorithmRef": "crypto/algorithm/aes-128-gcm@2.16.840.1.101.3.4.1.6"
 },
 "creationDate": "2016-11-21T08:00:00Z",
 "activationDate": "2016-11-21T08:20:00Z"
 },
 "oid": "1.2.840.113549.1.1.1"
 }
 }, {
 "name": "RSA-2048",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/algorithm/rsa-2048@1.2.840.113549.1.1.1",
 "cryptoProperties": { ... }
 }, {
 "name": "AES-128-GCM",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/algorithm/aes-128-gcm@2.16.840.1.101.3.4.1.6",
 "cryptoProperties": { ... }
 }
]

A complete example can be found at https://cyclonedx.org/shortcut/example/key

https://cyclonedx.org/shortcut/example/key
https://cyclonedx.org/shortcut/example/key

 16

Protocol

The following example lists an instance of the TLS v1.2 protocol with a number of cipher suites.

"components": [
 {
 "name": "TLSv1.2",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/protocol/tls@1.2",
 "cryptoProperties": {
 "assetType": "protocol",
 "protocolProperties": {
 "type": "tls",
 "version": "1.2",
 "cipherSuites": [
 {
 "name": "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",
 "algorithms": [
 "crypto/algorithm/ecdh-curve25519@1.3.132.1.12",
 "crypto/algorithm/rsa-2048@1.2.840.113549.1.1.1",
 "crypto/algorithm/aes-128-gcm@2.16.840.1.101.3.4.1.6",
 "crypto/algorithm/sha-384@2.16.840.1.101.3.4.2.9"
],
 "identifiers": ["0xC0", "0x30"]
 }
],
 "cryptoRefArray": [
 "crypto/certificate/google.com@sha256:1e15...beb4"
]
 },
 "oid": "1.3.18.0.2.32.104"
 }
 },
 {
 "name": "google.com",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/certificate/google.com@sha256:1e15...beb4",
 "cryptoProperties": {
 "assetType": "certificate",
 "certificateProperties": {
 "subjectName": "CN = www.google.com",
 "issuerName": "C = US, O = Google Trust Services LLC, CN = GTS CA 1C3",
 "notValidBefore": "2016-11-21T08:00:00Z",
 "notValidAfter": "2017-11-22T07:59:59Z",
 "signatureAlgorithmRef": "crypto/algorithm/sha512-rsa@1.2.840.113549.1.1.13",
 "subjectPublicKeyRef": "crypto/key/rsa2048@1.2.840.113549.1.1.1",
 "certificateFormat": "X.509",
 "certificateExtension": "crt"
 }
 }
 },
 {
 "name": "SHA512withRSA",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/algorithm/sha-512-rsa@1.2.840.113549.1.1.13",
 "cryptoProperties": {
 "assetType": "algorithm",
 "algorithmProperties": {
 "parameterSetIdentifier": "512",
 "executionEnvironment": "software-plain-ram",

 17

 "implementationPlatform": "x86_64",
 "certificationLevel": ["none"],
 "cryptoFunctions": ["digest"],
 "nistQuantumSecurityLevel": 0
 },
 "oid": "1.2.840.113549.1.1.13"
 }
 },
 {
 "name": "RSA-2048",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/key/rsa-2048@1.2.840.113549.1.1.1",
 "cryptoProperties": {
 "assetType": "related-crypto-material",
 "relatedCryptoMaterialProperties": {
 "type": "public-key",
 "id": "2e9ef09e-dfac-4526-96b4-d02f31af1b22",
 "state": "active",
 "size": 2048,
 "algorithmRef": "crypto/algorithm/rsa-2048@1.2.840.113549.1.1.1",
 "securedBy": {
 "mechanism": "Software",
 "algorithmRef": "crypto/algorithm/aes-128-gcm@2.16.840.1.101.3.4.1.6"
 },
 "creationDate": "2016-11-21T08:00:00Z",
 "activationDate": "2016-11-21T08:20:00Z"
 },
 "oid": "1.2.840.113549.1.1.1"
 }
 },
 {
 "name": "ECDH",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/algorithm/ecdh-curve25519@1.3.132.1.12",
 "cryptoProperties": {
 "assetType": "algorithm",
 "algorithmProperties": {
 "curve": "curve25519",
 "executionEnvironment": "software-plain-ram",
 "implementationPlatform": "x86_64",
 "certificationLevel": ["none"],
 "cryptoFunctions": ["keygen"],
 "nistQuantumSecurityLevel": 0
 },
 "oid": "1.3.132.1.12"
 }
 },
 {
 "name": "RSA-2048",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/algorithm/rsa-2048@1.2.840.113549.1.1.1",
 "cryptoProperties": {
 "assetType": "algorithm",
 "algorithmProperties": {
 "parameterSetIdentifier": "2048",
 "executionEnvironment": "software-plain-ram",
 "implementationPlatform": "x86_64",
 "certificationLevel": ["none"],
 "cryptoFunctions": ["encapsulate", "decapsulate"],
 "nistQuantumSecurityLevel": 0
 },

 18

 "oid": "1.2.840.113549.1.1.1"
 }
 },
 {
 "name": "AES-256-GCM",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/algorithm/aes-256-gcm@2.16.840.1.101.3.4.1.46",
 "cryptoProperties": {
 "assetType": "algorithm",
 "algorithmProperties": {
 "parameterSetIdentifier": "256",
 "primitive": "ae",
 "mode": "gcm",
 "executionEnvironment": "software-plain-ram",
 "implementationPlatform": "x86_64",
 "certificationLevel": ["none"],
 "cryptoFunctions": ["encrypt", "decrypt"],
 "classicalSecurityLevel": 256,
 "nistQuantumSecurityLevel": 5
 },
 "oid": "2.16.840.1.101.3.4.1.46"
 }
 },
 {
 "name": "SHA384",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/algorithm/sha-384@2.16.840.1.101.3.4.2.9",
 "cryptoProperties": {
 "assetType": "algorithm",
 "algorithmProperties": {
 "parameterSetIdentifier": "384",
 "executionEnvironment": "software-plain-ram",
 "implementationPlatform": "x86_64",
 "certificationLevel": ["none"],
 "cryptoFunctions": ["digest"],
 "classicalSecurityLevel": 192,
 "nistQuantumSecurityLevel": 4
 },
 "oid": "2.16.840.1.101.3.4.2.9"
 }
 }
]

A complete example can be found at https://cyclonedx.org/shortcut/example/protocol

https://cyclonedx.org/shortcut/example/protocol
https://cyclonedx.org/shortcut/example/protocol

 19

Certificate

The following example details an X.509 certificate in a CBOM.

"components": [
 {
 "name": "google.com",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/certificate/google.com@sha256:1e15...beb4",
 "cryptoProperties": {
 "assetType": "certificate",
 "certificateProperties": {
 "subjectName": "CN = www.google.com",
 "issuerName": "C = US, O = Google Trust Services LLC, CN = GTS CA 1C3",
 "notValidBefore": "2016-11-21T08:00:00Z",
 "notValidAfter": "2017-11-22T07:59:59Z",
 "signatureAlgorithmRef": "crypto/algorithm/sha-512-rsa@1.2.840.113549.1.1.13",
 "subjectPublicKeyRef": "crypto/key/rsa-2048@1.2.840.113549.1.1.1",
 "certificateFormat": "X.509",
 "certificateExtension": "crt"
 }
 }
 },
 {
 "name": "SHA512withRSA",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/algorithm/sha-512-rsa@1.2.840.113549.1.1.13",
 "cryptoProperties": { ... }
 },
 {
 "name": "RSA-2048",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/key/rsa-2048@1.2.840.113549.1.1.1",
 "cryptoProperties": { ... }
 },
 {
 "name": "RSA-2048",
 "type": "cryptographic-asset",
 "bom-ref": "crypto/algorithm/rsa-2048@1.2.840.113549.1.1.1",
 "cryptoProperties": { ... }
 }
]

A complete example can be found at https://cyclonedx.org/shortcut/example/cert

https://cyclonedx.org/shortcut/example/cert
https://cyclonedx.org/shortcut/example/cert

 20

Dependencies

CycloneDX provides the ability to describe components and their dependency on other components. This

relies on a component's bom-ref to associate the component with the dependency element in the graph.

The only requirement for bom-ref is that it is unique within the BOM. Package URL (PURL) is an ideal

choice for bom-ref as it will be both unique and readable. If PURL is not an option or not all components

represented in the BOM contain a PURL, then UUID is recommended. A dependency graph is capable of

representing both direct and transitive relationships. In CycloneDX representation dependencies, a

dependency graph SHOULD be codified to be one node deep, meaning no nested child graphs. All

relations are on the same level.

Refer to the CycloneDX Authoritative Guide to SBOM for additional details.

In the context of cryptographic dependencies, CycloneDX provides some additional capabilities. As of

CycloneDX v1.6, there are two types of dependencies: dependsOn and provides.

Dependency

Type

Description

dependsOn The bom-ref identifiers of the components or services that are dependencies of this

dependency object.

provides The bom-ref identifiers of the components or services that define a given specification

or standard, which are provided or implemented by this dependency object. For

example, a cryptographic library that implements a cryptographic algorithm. A

component that implements another component does not imply that the

implementation is in use.

The dependency type, dependsOn, is leveraged by classic SBOMs to define a complete graph of direct

and transitive dependencies. However, for cryptographic and similar assets, "provides" allows for many

additional use cases.

https://cyclonedx.org/guides/

 21

The example shows an application (nginx) that uses the libssl cryptographic library. This library

implements the TLSv1.2 protocol. The relationship between the application, the library and the protocol

can be expressed by using the dependencies properties of the SBOM standard.

Since a TLS protocol supports different cipher suites that include multiple algorithms, there should be a

way to represent these relationships as part of the CBOM. Compared to adding the algorithms as

"classic" dependencies to the protocol, we defined special property fields that allow referencing the

deployment with additional meaning. The protocolProperties allows adding an array of algorithms to a

cipher suite as part of the cipher suite array. By modeling and then referencing these algorithms, we can

still have only one classical component at the SBOM level but a subtree of crypto dependencies within

the crypto asset components.

The following example illustrates a simple application with a dependency on a cryptographic library,

which, in turn, implements AES-128-GCM. The cryptographic library also depends on another library.

"dependencies": [
 {
 "ref": "acme-application",
 "dependsOn": ["crypto-library"]
 },
 {
 "ref": "crypto-library",
 "provides": ["aes128gcm"],
 "dependsOn": ["some-library"]
 }
]

 22

Decoupling CBOM From SBOM With BOM-Link

With CycloneDX, it is possible to reference a BOM, or a component, service, or vulnerability inside a

BOM from other systems or other BOMs. This deep-linking capability is referred to as BOM-Link and is a

formally registered URN, governed by IANA, and compliant with RFC-8141.

Syntax:

urn:cdx:serialNumber/version#bom-ref

Examples:

urn:cdx:f08a6ccd-4dce-4759-bd84-c626675d60a7/1
urn:cdx:f08a6ccd-4dce-4759-bd84-c626675d60a7/1#componentA

Field Description

serialNumber The unique serial number of the BOM. The serial number MUST conform to RFC-4122.

version The version of the BOM. The default version is 1.

bom-ref The unique identifier of the component, service, or vulnerability within the BOM.

There are many use cases that BOM-Link supports. Two common scenarios are:

• Reference one BOM from another BOM

• Reference a specific component or service in one BOM from another BOM

Linking an SBOM to a CBOM

In CycloneDX, external references point to resources outside the object they're associated with and may

be external to the BOM, or may refer to resources within the BOM. External references can be applied to

individual components, services, or to the BOM itself.

The following example illustrates how an application in an SBOM can reference an external CBOM:

"components": [
 {
 "type": "application",
 "name": "Acme Application",
 "version": "1.0.0",
 "externalReferences": [
 {
 "type": "bom",
 "url": "https://example.com/bom/acme-application-1.0.0-cbom.cdx.json",
 "hashes": [{
 "alg": "SHA-256",
 "content": "708f1f53b41f11f02d12a11b1a38d2905d47b099afc71a0f1124ef8582ec7313"
 }]
 }
]
 }
]

https://www.iana.org/assignments/urn-formal/cdx
https://www.iana.org/
https://www.rfc-editor.org/rfc/rfc8141.html

 23

Attestations

CycloneDX Attestations is a modern standard for security compliance. CycloneDX Attestations enable

organizations with a machine-readable format for communication about security standards, claims and

evidence about security requirements, and attestations to the veracity and completeness of those claims.

You can think of Attestations as a way to manage "compliance as code."

Cryptography Standards

Organizations can declare the cryptography standards they follow, such as NIST or FIPS, in a CycloneDX

Attestation. This helps ensure that all parties involved in the software development and deployment

process are aware of the required cryptography standards.

By providing evidence such as test results, code reviews or other documents that prove that their

software meets the cryptography requirements, they enable automatic verification of compliance with the

requirements. For example, it can be verified that only approved cryptography algorithms are used and

implemented correctly.

CycloneDX Attestations can also be used to manage compliance with cryptography requirements over

time. As new weaknesses are discovered or standards change, organizations can update their

applications, and therefore their attestations, to reflect the changes and ensure ongoing compliance.

Refer to the CycloneDX Authoritative Guide to Attestations for additional details.

https://cyclonedx.org/guides/

Copyright © OWASP Foundation

